首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1291篇
  免费   120篇
  国内免费   123篇
化学   706篇
晶体学   1篇
力学   245篇
综合类   41篇
数学   248篇
物理学   293篇
  2024年   5篇
  2023年   15篇
  2022年   61篇
  2021年   113篇
  2020年   50篇
  2019年   35篇
  2018年   29篇
  2017年   52篇
  2016年   59篇
  2015年   49篇
  2014年   74篇
  2013年   148篇
  2012年   57篇
  2011年   60篇
  2010年   44篇
  2009年   39篇
  2008年   50篇
  2007年   67篇
  2006年   68篇
  2005年   61篇
  2004年   44篇
  2003年   40篇
  2002年   36篇
  2001年   25篇
  2000年   35篇
  1999年   31篇
  1998年   25篇
  1997年   27篇
  1996年   23篇
  1995年   17篇
  1994年   16篇
  1993年   8篇
  1992年   14篇
  1991年   8篇
  1990年   9篇
  1989年   7篇
  1988年   14篇
  1987年   4篇
  1986年   1篇
  1985年   4篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1974年   1篇
  1973年   1篇
  1957年   2篇
排序方式: 共有1534条查询结果,搜索用时 15 毫秒
51.
Abstract

The linear and non-linear relationships of acute toxicity (as determined on five aquatic non-vertebrates and humans) to molecular structure have been investigated on 38 structurally-diverse chemicals. The compounds selected are the organic chemicals from the 50 priority chemicals prescribed by the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme. The models used for the evaluations are the best combination of physico-chemical properties that could be obtained so far for each organism, using the partial least squares projection to latent structures (PLS) regression method and backpropagated neural networks (BPN). Non-linear models, whether derived from PLS regression or backpropagated neural networks, appear to be better than linear models for describing the relationship between acute toxicity and molecular structure. BPN models, in turn, outperform non-linear models obtained from PLS regression. The predictive power of BPN models for the crustacean test species are better than the model for humans (based on human lethal concentration). The physico-chemical properties found to be important to predict both human acute toxicity and the toxicity to aquatic non-vertebrates are the n?octanol water partition coefficient (Pow) and heat of formation (HF). Aside from the two former properties, the contribution of parameters that reflect size and electronic properties of the molecule to the model is also high, but the type of physico-chemical properties differs from one model to another. In all of the best BPN models, some of the principal component analysis (PCA) scores of the 13C-NMR spectrum, with electron withdrawing/accepting capacity (LUMO, HOMO and IP) are molecular size/volume (VDW or MS1) parameters are relevant. The chemical deviating from the QSAR models include non-pesticides as well as some of the pesticides tested. The latter type of chemical fits in a number of the QSAR models. Outliers for one species may be different from those of other test organisms.  相似文献   
52.
Abstract

On behalf of the Umweltbundesamt the Fraunhofer Gesellschaft has developed a software system (SAR-system) comprising more than 90 estimation models for endpoints relevant in environmental risk assessment. These estimation models are based on the approach of quantitative structure-activity relationships (QSAR). All models were checked for their validity and application range. In the last months the Umweltbundesamt started to test the applicability of some models concerning the endpoints fish acute toxicity, daphnia acute toxicity and ready (i.e., ultimate) biodegradability in the daily routine of the notification procedure. For testing these models the corresponding confidential data given in the dossiers of substances notified 1993 in Germany, were used. We were able to make calculations for 36% of the notified substances. For the remaining 64% of the chemicals it was impossible to accomplish SAR estimations due to several reasons, e.g., ionic structure of the compounds. Different results for the applicability of the mentioned endpoints are obtained. The predictions of the fish and Daphnia toxicity are in sufficient agreement with the experimental results, in case of the fish toxicity we receive 58% agreement, for the Daphnia toxicity 56% The corresponding values which were obtained in the US EPA/E.C. Joint Project on the evaluation of (quantitative) structure activity relationships were 82.3% and 70.9% About 300 different models were used for the calculations of these endpoints within the framework of the EPA/EC project. The SAR-system presented here contains 8 models for estimating the fish toxicity and 6 models for the Daphnia toxicity. For the prediction of the biodegradability the results obtained with the SAR-system are rather poor and have to be improved. Meanwhile the SAR-system is commercially available and can be ordered at the Fraunhofer Institute for Environmental Chemistry and Ecotoxicology, Schmallenberg (Germany).  相似文献   
53.
Abstract

Chemical insults to the developing fetus can lead to growth retardation, malformation, death, and functional deficits. The present study seeks to determine if physicochemical and/or graph theoretical parameters can be used to determine a structure-activity relationship (SAR) for developmental toxicity, and if consistency is observed among the selected features. The biological data utilized consists of a diverse series of compounds evaluated within the Chernoff-Kavlock in vivo mouse assay. Physicochemical parameters calculated correspond to electronic, steric, and transport properties. Graph theoretical parameters calculated include the simple, valence, and kappa indices. Both sets of parameters were independently applied to derive SARs in order to compare the quality of the respective models. Multiple random sampling, without replacement, was utilized to obtain ten training/test partitions. Models were built by linear discriminant analysis, decision trees, and neural networks respectively. Comparisons on identical sets of data were carried out to determine if any of the model building procedures had a significant advantage in terms of predictive performance. Furthermore, comparison of the features selected within and across the model building processes led to the determination of model consistency. Our results indicate that consistent features related to developmental toxicity are observed and that both physicochemical and graph theoretical parameters have equal utility.  相似文献   
54.
55.
Quantitative structure-activity relationships (QSARs) based on the octanol/water partition coefficient were employed to predict acute toxicities of 36 substituted aromatic compounds and their mixtures. In this study, the model developed by Verhaar et al. was modified and used to calculate octanol/water partition coefficients of chemical mixtures. To validate the model, acute toxicities of these chemicals were measured to Vibrio fischeri in terms of EC50. The results indicated that the obtained QSAR models could be used to predict toxicities of samples consisting of these substituted aromatic compounds, individually or in combinations. The obtained equations were proved to be robust enough by using the leave-one-out test method. By classifying these chemicals into two groups, polar and non-polar, the toxicities of chemical mixtures within each group can be predicted accurately from their calculated partition coefficients.  相似文献   
56.
57.
It is known that the compound 2,4-dichloro-6-nitrophenol (2,4DC6NP) is formed upon nitration of 2,4-dichlorophenol, which in turn is a transformation intermediate of the herbicide dichlorprop. However, the chemical and spectroscopic characteristics of 2,4DC6NP, as well as its toxicity, are poorly known. This work shows that 2,4DC6NP behaves as a diprotic acid in aqueous solutions, with pKa values of 3.0?±?0.9 and 4.9?±?0.5. At pH?<?3, 2,4DC6NP would undergo protonation. The absorption spectra suggest that anionic 2,4DC6NP, which prevails at pH?>?5 would have an ortho-quinoid structure that is responsible for the absorption peak centred at 428?nm. Considering that 2,4DC6NP has been detected in the brackish lagoons of the Rhône delta (southern France), where its levels are comparable to those of the parent herbicide, it is necessary to examine the possible effects of 2,4DC6NP on the species living in that environment. For this reason, the acute toxicity of the anionic form of 2,4DC6NP was assessed for the brine shrimp Artemia salina, a zooplankton species that lives both in brackish and in saline aquatic environments. The toxicity test yielded a LC20 value of 8?±?2?mg?L?1 and a LC50 value of 18.7?±?0.8?mg?L?1. Such values are safely higher than the maximum detected concentration of 2,4DC6NP in the Rhône delta lagoons. Further studies should be concentrated on the long-term effects of 2,4DC6NP, and in particular on its potential genotoxicity.  相似文献   
58.
This article describes a nutrient‐phytoplankton‐zooplankton system with nutrient recycling in the presence of toxicity. We have studied the dynamical behavior of the system with delayed nutrient recycling in the first part of the article. Uniform persistent of the system is examined. In the second part of the article, we have incorporated diffusion of the plankton population to the system and dynamical behavior of the system is analyzed with instantaneous nutrient recycling. The condition of the diffusion driven instability is obtained. The conditions for the occurrence of Hopf and Turing bifurcation critical line in a spatial domain are derived. Variation of the system with small periodicity of diffusive coefficient has been studied. Stability condition of the plankton system subject to the periodic diffusion coefficient of the zooplankton is derived. It is observed that nutrient‐phytoplankton‐zooplankton interactions are very complex and situation specific. Moreover, we have obtained different exciting results, ranging from stable situation to cyclic oscillatory behavior may occur under different favorable conditions, which may give some insights for predictive management. © 2014 Wiley Periodicals, Inc. Complexity 21: 229–241, 2015  相似文献   
59.
60.
Microbial fuel cells (MFCs) have been extensively studied as self-powered toxicity biosensors; however, their applications are limited by the relatively poor toxicity responses. The toxicity responses are known to be related to the factors such as the resistance of species to toxicants, the bioavailability of toxicants and the type of sensing elements. Accordingly, some strategies have already been proposed to enhance the toxicity responses in the past several years, including the external resistance tuning, quorum sensing effect, shear stress control, nutrient level control, electrode material choice, sensing element choice, and cell configuration design. This work introduces and discusses these strategies, and the suggestion for future work is also provided finally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号