首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   106篇
  免费   15篇
  国内免费   22篇
化学   130篇
综合类   2篇
物理学   11篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   5篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   9篇
  2013年   13篇
  2012年   5篇
  2011年   5篇
  2010年   10篇
  2009年   3篇
  2008年   3篇
  2007年   6篇
  2006年   3篇
  2005年   8篇
  2004年   3篇
  2003年   4篇
  2002年   7篇
  2001年   8篇
  2000年   3篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有143条查询结果,搜索用时 31 毫秒
61.
62.
Normal mode analysis and their dispersion for poly(L ‐histidine) (PLH) are reported by using Urey Bradley force field and Fourier Transform IR PLH exists in the α helical form. There are 17 atoms in one residue, which gives rise to 51 dispersion curves. To simplify, it is convenient to discuss the normal frequencies under three separate heads namely amide modes, side chain modes, and mixed mode. The calculated frequencies are found to be in reasonably good agreement with the Fourier Transform IR spectra. There exists exchange of character, attraction, and repulsion for selective dispersion curves with change in the phase value. Contributions to the heat capacity were calculated separately for the side chain, backbone, and mixed modes. The major contribution comes from the side chain and mixed modes. The sum of these three contributions gives the total heat capacity, which is in agreement with the reported experimental value. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 128–137, 2010  相似文献   
63.
电喷雾质谱(ESI-MS)是一种软电离质谱技术,已在配合物的结构和机理的研究中显示了重要的作用。本文根据组氨酸钴(CoL2)(L=组氨酸)对分子氧活性很高,极易生成双核氧合配合物(CoL2-O2-CoL2)的特点,采用ESI-MS方法研究了组氨酸钴氧合物(CoL2-O2-CoL2)和组氨酸配合物ML2(M=Cu、Zn)。结果发现,质谱图中在相应于双核氧合配合物的高质荷比端(m/z>ML2),CoL2出现质谱峰,而组氨酸配合物ML2(M=Cu、Zn)在质谱图中高质荷比端没有出现质谱峰,只有配合物ML2的相关峰;这个结果证明了文献报道中的双核氧合配合物(CoL2-O2-CoL2)的存在,根据所得质谱结果,初步研究了组氨酸钴双核氧合配合物和ML2配合物的裂解规律。结果表明,可根据质谱数据中有无二聚体形态,做出Co配合物有无吸氧性能的初步判断,因此电喷雾质谱(ESI-MS)可做为研究Co配合物氧合反应和表征Co氧合配合物的有效分析手段。  相似文献   
64.
Biocompatible lipo‐histidine hybrid materials conjugated with IR820 dye show pH‐sensitivity, efficient intracellular delivery of doxorubicin (Dox), and intrinsic targetability to cancer cells. These new materials form highly uniform Dox‐loaded nanosized vesicles via a self‐assembly process showing good stability under physiological conditions. The Dox‐loaded micelles are effective for suppressing MCF‐7 tumors, as demonstrated in vitro and in vivo. The combined mechanisms of the EPR effect, active internalization, endosomal‐triggered release, and drug escape from endosomes, and a long blood circulation time, clearly prove that the IR820 lipopeptide DDS is a safe theranostic agent for imaging‐guided cancer therapy.

  相似文献   

65.
Neutral loss of water from the amide bond induced by the His side chain has been reported. The proposed fragmentation pathway is a retro-Ritter reaction catalyzed by the imidazole nitrogen. In our MS/MS study of the neuropeptide GAHKNYLRFamide, we observed that the neutral loss of water from the b(3) ion is abundant. The b(3) ion has a His residue at the C-terminus. As reported previously, in the b ions with His at the C-terminus, the imidazole residue is connected to the carbonyl carbon to form a five-membered ring. Therefore, it is unlikely that the neutral loss of water from the b(3) ion is catalyzed by the imidazole nitrogen. Through MS2 and MS3 studies of a synthetic peptide standard AGHKLL and its chemically labeled and isotope-encoded forms, we discovered that the water loss from the b(3) ion involves the carbonyl group of His, the hydrogen connected to the alpha-carbon of Gly, and the amide hydrogen of His. We also discovered the formation of an unusual c(x) ion in peptides with a Lys or Arg residue at the (x + 1) position of the peptide.  相似文献   
66.
Mixed ligand complexes of Zn(II) and Co(II) with cysteine, histidine, cysteinemethylester, and histidinemethylester have been synthesized and characterized by elemental analysis, conductivity, magnetic susceptibility measurements, and infrared,1H NMR, TGA and FAB mass spectra. In these complexes, histidine, and histidinemethylester act as bidentate ligands involving amino and imidazole nitrogens in metal coordination. Similarly, cysteine, and cysteinemethylester also act as bidentate ligands coordinating through thiol sulphur and amino nitrogen. Tetrahedral geometry has been proposed for Zn(II) and Co(II) complexes based on experimental evidence.  相似文献   
67.
Sample preparation is an important issue in analytical chemistry, and is often a bottleneck in chemical analysis. So, the major incentive for the recent research has been to attain faster, simpler, less expensive, and more environmentally friendly sample preparation methods. The use of auxiliary energies, such as heat, ultrasound, and microwave, is one of the strategies that have been employed in sample preparation to reach the above purposes. Application of electrical driving force is the current state-of-the-art, which presents new possibilities for simplifying and shortening the sample preparation process as well as enhancing its selectivity. The electrical driving force has scarcely been utilized in comparison with other auxiliary energies. In this review, the different roles of electrical driving force (as a powerful auxiliary energy) in various extraction techniques, including liquid-, solid-, and membrane-based methods, have been taken into consideration. Also, the references have been made available, relevant to the developments in separation techniques and Lab-on-a-Chip (LOC) systems. All aspects of electrical driving force in extraction and separation methods are too specific to be treated in this contribution. However, the main aim of this review is to provide a brief knowledge about the different fields of analytical chemistry, with an emphasis on the latest efforts put into the electrically assisted membrane-based sample preparation systems. The advantages and disadvantages of these approaches as well as the new achievements in these areas have been discussed, which might be helpful for further progress in the future.  相似文献   
68.
As the properties of nanomaterials are strongly dependent on their size, shape and nanostructures, probing the relations between macro‐properties and nanostructures is challenging for nanoscientists. Herein, we deliberately chose three types of Ni(OH)2 with hexagonal, truncated trigonal, and trigonal hourglass‐like nanostructures, respectively, as the electrode modifier to demonstrate the correlation between the nanostructures and their electrocatalytic performance towards L ‐histidine. It was found that the hexagonal hourglass‐like Ni(OH)2 sample had the best electrocatalytic activity, which can be understood by a cooperative mechanism: on one hand, the hexagonal sample possesses the largest specific surface area and the tidiest nanostructure, resulting in the most orderly packing on the electrode surface; on the other hand, its internal structure with the most stacking faults would generate a lot of unstable protons, leading to an enhanced electronic conductivity. The findings are important because they provide a clue for materials design and engineering to meet a specific requirement for electrocatalysis of L ‐histidine, possibly even for other biomolecules. In addition, the hexagonal Ni(OH)2‐based biosensor shows excellent sensitivity and selectivity in the determination of L ‐histidine and offers a promising feature for the analytical application in real biological samples.  相似文献   
69.
In this work, a new method employing capillary electrophoresis (CE) for the determination of several species in biodiesel is introduced. The concentrations of inorganic species (Na+, K+, Ca2+, Mg2+, SO42−, and PO43−) and glycerol are of interest to the regulatory authorities due to their ability to form undesirable compounds in engines. Additionally, other species of low molecular weight (e.g., acetate, formate, and propionate) are of interest because they contribute towards increasing the acidity. These species are formed by the degradation of biodiesel and cause damage to engines and the environment. The cation separation was performed in background electrolyte (BGE) composed of 30 mmol L−1 of 2-(n-morpholino)ethanesulfonic acid (MES)/L-histidine (His), pH 6. The separation of anionic species was carried out in similar BGE with 0.2 mmol L−1 cetyltrimethylammonium bromide (CTAB) added. For glycerol, a neutral species, its oxidation with periodate was employed. This well-known reaction is specific to polyols and generates iodate. The amount of iodate produced by the reaction was determined by CE. The separation was carried out in approximately 1 min using BGE composed of 30 mmol L−1 acetic acid, pH 3. The analytical parameters evaluated were: linearity (r > 0.99), the RSD values for area and migration time were < 3.4% and 0.9%, respectively, and recovery was in the range of 89 to 107%.  相似文献   
70.
A novel glutathione-capped cadmium telluride quantum dots-based fluorescence “off–on” sensor was designed and applied for highly sensitive and selective monitoring of histidine in aqueous solution. To provide a platform for histidine detection, manganese ion was first employed as an effective quencher to decrease the fluorescence of glutathione-capped cadmium telluride quantum dots because of the binding of manganese ion to glutathione on the surface of quantum dots and the electron transfer from the photoexcited glutathione-capped cadmium telluride quantum dots to manganese ion. Due to its high binding affinity with manganese ion, histidine can make the manganese ion to be dissociated from the surface of glutathione-capped cadmium telluride quantum dots to form more stable complex with histidine in solution, and set free the luminescent glutathione-capped cadmium telluride quantum dots, thereby recovering the fluorescence of glutathione-capped cadmium telluride quantum dots. Experimental results showed that the recovered fluorescence intensity was directly proportional to the concentration of histidine in the range of 0.006 to 465.0 µg mL?1 with a correlation coefficient (R) of 0.9977, and the detection limit (3σ/K) was 1.82 ng mL?1. Relevant experiments also revealed that the fluorescence sensor gives excellent selectivity for histidine over other common amino acids. To further investigate perfect analysis performance, this sensor was utilized to determine histidine in synthetic samples with satisfactory results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号