首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   842篇
  免费   68篇
  国内免费   135篇
化学   972篇
晶体学   1篇
力学   1篇
综合类   20篇
物理学   51篇
  2023年   9篇
  2022年   32篇
  2021年   37篇
  2020年   24篇
  2019年   25篇
  2018年   13篇
  2017年   15篇
  2016年   35篇
  2015年   26篇
  2014年   44篇
  2013年   49篇
  2012年   74篇
  2011年   57篇
  2010年   29篇
  2009年   68篇
  2008年   53篇
  2007年   47篇
  2006年   67篇
  2005年   46篇
  2004年   59篇
  2003年   32篇
  2002年   29篇
  2001年   20篇
  2000年   27篇
  1999年   18篇
  1998年   20篇
  1997年   14篇
  1996年   14篇
  1995年   21篇
  1994年   13篇
  1993年   5篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   2篇
  1988年   1篇
  1985年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1959年   1篇
排序方式: 共有1045条查询结果,搜索用时 250 毫秒
91.
Graphene composites with hemin and gold nanoparticles show a better performance for hydrogen peroxide decomposition compared to that of the three components alone or duplex/hybrid complexes. Our previous studies showed that the morphology of the Au nanoparticles may greatly influence the catalytic activity of graphene‐family peroxidase mimics. Recently, we found that Au nanoflowers could grow in situ and form on the surface of hemin/RGO (reduced graphene oxide). The prickly morphology of this Au nanoflower brought a higher catalytic ability with enhanced kinetic parameters than traditional Au nanoparticles that showed a smooth surface. Therefore, based on this discovery, a smart electrochemical aptamer biosensor for K562 leukemia cancer cells was further presented with good performance in selectivity and sensitivity attributed to the excellent mimetic peroxidase catalytic activity of this newly synthesized Au nanoflower decorated graphene–hemin composite (H‐RGO‐Au NFs).  相似文献   
92.
93.
Stanca SE  Popescu IC  Oniciu L 《Talanta》2003,61(4):501-507
Two different approaches, both exploiting two enzymes cooperative functioning, to enhance the sensitivity of tyrosinase (PPO) based biosensor for amperometric detection of phenols have been compared. For this purpose, one monoenzyme electrode (PPO) and two bienzyme electrodes (PPO and d-glucose dehydrogenase, GDH; PPO and horseradish peroxidase, HRP) were constructed using agar-agar gel as enzyme immobilization matrix. The biosensors responses for l-tyrosine detection were recorded at −50 mV versus saturated calomel electrode (SCE). The highest sensitivity (74 mA M−1) was observed for the PPO-GDH couple, while that recorded for PPO-HRP couple system was only 32 times higher than that measured for monoenzyme electrode (0.01 mA M−1). The ability of the PPO-, PPO-GDH-, PPO-HRP-based biosensors to assay phenols was demonstrated by quantitative determination of phenol, 1,2-dihydroxybenzene, 1,3-dihydroxybenzene, 1,4-dihydroxybenzene, 2-amino-3 (4-hydroxyphenyl) propanoic acid, 2-hydroxytoluene, 3-hydroxytoluene, 4-hydroxytoluene, 4-clorophenol, 3-clorophenol, 2-clorophenol, 4-hydroxybenzoic acid.  相似文献   
94.
Hairy root cultures of Armoracia lapathifolia established by infection with Agrobacterium rhizogenes LBA 9402 present a level and isoenzyme pattern of peroxidases (POD) comparable to nontransformed roots. Elicitation with chitosan (10, 50, and 100 mg/L) was used in order to improve POD production. Total POD activity increased about 170% after 48h of treatment with chitosan 100 mg/L. Elicitation effect on soluble and ionically cell-wall-bound POD fractions of A. lapathifolia hairy roots was analyzed. POD activity of the ionically cell-wall-bound protein fraction increased in the presence of chitosan in a dose-response manner. No effect on soluble POD fractions was observed, but the isoenzyme pattern analyzed by isoelectrofocusing showed an increase of an acidic isoenzyme (pI=3.4) after the elicitation treatment. The ionically cell-wall-bound protein fraction showed only basic isoenzymes, with an increase of an isoenzyme of pI=8.7, after the elicitation treatment.  相似文献   
95.
One-step, diameter-selective dispersion of single-walled carbon nanotubes (SWCNTs) has been accomplished through noncovalent complexation of the nanotubes with a water-soluble, biocompatible polymer chitosan at room temperature. Such chitosan-wrapped individual SWCNTs can be used for the immobilization of horseradish peroxidase (HRP) and be used to construct an electrode for direct bioelectrochemical sensing without an electron mediator. The direct electron transfer between HRP and the electrode surface was observed with a formal potential of approximately −0.35 V (vs. saturated calomel electrode) in phosphate buffer solution and the calculated heterogeneous electron transfer rate constant is approximately 23.5 s−1. Experimental results indicate that the immobilized HRP retains its catalytic activity for the reduction of nitric oxide. Such an HRP–SWCNT–chitosan-based biosensor exhibited a rapid response time of less than 6 s and a good linear detection range for nitrite concentration, from 25 to 300 μM with a detection limit of 3 μM. The apparent Michaelis–Menten constant (K m) and the maximum electrode sensitivity (imax/K m) are found to be 7.0 mM and 0.16 μA mM−1, respectively. Both the unique electrical properties of SWCNTs and biocompatibility of chitosan enable the construction of an excellent biosensing platform for improved electrocatalysis of HRP, allowing, specifically, the detection of trace levels of nitric oxide.  相似文献   
96.
97.
Formation of micelle‐type assembly from supramolecular complexation of a surfactant and an oppositely charged homopolymer is demonstrated. The lower CAC observed for these assemblies suggest that the electrostatic interaction provides an amphiphilic homopolymer‐like structure. The stimulus‐induced disassembly of these supramolecular structures has been accomplished with variations in redox characteristics, ionic strength, and pH of the medium. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1052–1060, 2009  相似文献   
98.
Detection of infectious viruses relies on quantitative polymerase chain reaction (qPCR). However, qPCR requires costly equipment, a clean operating environment and experienced technicians, limiting its wide applicability. On the other hand, enzyme-linked immunosorbent assay (ELISA) is widely used in biological laboratories due to its relatively high sensitivity and ease of operation. However, ELISA-based detection of the virus is hampered because it is lower sensitive than qPCR. Herein, a nanoprobe ELISA (NP-ELISA) based on a mesoporous silica nanoprobe, which is constructed by first being loaded with peroxidase and further coated with positively charged polymer polyethyleneimine, and finally functionalized with antivirus antibodies, is designed. Results show that each NP probe is encapsulating 170 peroxidase molecules and presents 200 antibody molecules on the surface. The limit of detection (LOD) of NP-ELISA (LOD = 1450 PFU mL−1) for the detection of real virus samples is tenfold sensitive than that of standard ELISA (LOD = 14, 414 PFU mL−1) and the assay time for NP-ELISA is reduced by 1 h as compared with standard one. Therefore, the NP-ELISA provides a rapid and sensitive immunoassay platform that can readily be implemented for biological laboratory research as well as for on-site clinical diagnostics.  相似文献   
99.
明胶固定辣根过氧化物酶制备H_2O_2传感器   总被引:2,自引:0,他引:2  
屈建莹  陈文静 《化学学报》2010,68(3):257-262
用明胶将辣根过氧化物酶(HRP)固定于多壁碳纳米管(MWNT)和茜素红(AR)修饰的玻碳(GC)电极上,制成HRP生物传感器(HRP/AR/MWNT/GC),然后在3%戊二醛(GA)中进行交联改性,以克服明胶膜易溶胀的缺点,并提高膜的稳定性.同时详细探讨了该传感器对H2O2的响应性能,并优化了实验条件.结果表明,该传感器对H2O2的线性响应范围为5.0×10-6~1.0×10-3mol/L,线性相关系数为0.9932,检出限为1.0×10-7mol/L,且放于4℃环境30d后,峰电流值约为原来的72.1%.该传感器响应快速,灵敏度高,且具有良好的重现性、稳定性及较长的使用寿命,具有潜在的应用价值.  相似文献   
100.
Qing Lu 《Talanta》2010,82(4):1344-248
A novel electrochemical sensing system for direct electrochemistry-based hydrogen peroxide biosensor was developed that relied on the virtues of excellent biocompatibility, conductivity and high sensitivity to the local perturbations of single-layer graphene nanoplatelet (SLGnP). To demonstrate the concept, the horseradish peroxidase (HRP) enzyme was selected as a model to form the SLGnP-TPA (tetrasodium 1,3,6,8-pyrenetetrasulfonic acid)-HRP composite film. The single-layer graphene composite film displayed a pair of well-defined and good reversible cyclic voltammetric peak for Fe(III)/Fe(II) redox couple of HRP, reflecting the enhancement for the direct electron transfer between the enzyme and the electrode surface. Analysis using electrochemical impedance spectroscopy (EIS) revealed that electrostatic attractions existed between graphene monolayers and enzyme molecules. The intimate graphene and enzyme interaction was also observed using scanning electron microscopy (SEM), which resulted in the special properties of the composite film. Ultraviolet visible spectroscopy (UV-vis) indicated the enzyme in the composite film retained its secondary structure similar to the native state. The composite film demonstrated excellent electrochemical responses for the electrocatalytic reduction of hydrogen peroxide (H2O2), thus suggesting its great potential applications in direct electrochemistry-based biosensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号