The influence of pre-dosed oxygen on NO–C2H4 interactions on the surface of stepped Pt(3 3 2) has been investigated using Fourier transform infrared reflection–absorption spectroscopy (FTIR-RAS) and thermal desorption spectroscopy (TDS). The presence of oxygen significantly suppresses the adsorption of NO on the steps of Pt(3 3 2), leading to a very specific adsorption state for NO molecules when oxygen–NO co-adlayers are annealed to 350 K (assigned as atop NO on step edges). An oxygen-exchange reaction also takes place between these two kinds of adsorbed molecules, but there appears to be no other chemical reaction, which can result in the formation of higher-valence NOx.
C2H4 molecules which are post-dosed at 250 K to adlayers consisting of 18O and NO do not have strong interactions with either the NO or the 18O atoms. In particular, interactions which may result in the formation of new surface species that are intermediates for N2 production appear to be absent. However, C2H4 is oxidized to C18O2 by 18O atoms at higher annealing temperature. This reaction scavenges surface 18O atoms quickly, and the adsorption of NO molecules on step sites is therefore quickly restored. As a consequence, NO dissociation on steps proceeds very effectively, giving rise to N2 desorption which closely resembles that following only NO exposure on a clean Pt(3 3 2), both in peak intensity and desorption temperature. It is concluded that the presence of 18O2 in the selective catalytic reduction (SCR) of NO with C2H4 on the surface of Pt(3 3 2) does not play a role of activating reactants. 相似文献
The mechanism of the action of copper-dependent quercetin 2,3-dioxygenase(2,3QD) has been investigated by means of hybrid density functional theory.The 2,3QD enzyme cleaves the O-heterocycle of a quercetin by incorporation of both oxygen atoms into the substrate and releases carbon monoxide.The calculations show that dioxygen attack on the copper complex is energetically favorable.The adduct has a possible near-degeneracy of states between [Cu 2+-(substrate-H +)] and [Cu +-(substrate-H).],and in addition the pyramidalized C 2 atom is ideally suited for forming a dioxygen-bridged structure.In the next step,the C 3-C 4 bond is cleaved and intermediate Int 5 is formed via transition state TS 4.Finally,the O a-O b and C 2-C 3 bonds are cleaved,and CO is released in one concerted transition state(TS 5) with the barrier of 63.25 and 61.91 kJ/mol in the gas phase and protein environments,respectively.On the basis of our proposed reaction mechanism,this is the rate-limiting step of the whole catalytic cycle and is strongly driven by a relatively large exothermicity of 100.86 kJ/mol.Our work provides some valuable fundamental insights into the behavior of this enzyme. 相似文献
l/or if llctcrogclleous catalyst, it is c('lllllloll that dillbrcnt 1llcthods of preparation result ina dillbrcllcc ill tile catalytic activity, altllotlgll its composition is the same. For atriltlitiotlill if')lllogctlcolls catalyst witll ljxc(l c(f)lllpositioll, its catalytic activity usuallydt)es hot cllallgc Witll tile llletllod elf l,l'cl,arutioll. I'olylller-supported catalysts are calledtile lletcrogcllizc(1 llolllogcllcolls catalysts that colllbille the nlcrits of h()1llogcncous andllc… 相似文献
Nano-sized TiO2 powders were synthesized by modified hydrolysis reaction using two-stage treatments of acid/base catalyst. Using an acidic catalyst, the primary particle size of assynthesized TiO2 was smaller than using basic catalyst, but rutile ratio and the particle size were increased after heat treatment due to the dense packing of particles. However, in the synthesized TiO2 powder using a basic catalyst persist the anatase phase and a loosely aggregation of particle after heat treatment. It was found that the catalyst used in the first stage determines the primary particle size. However the phase, the packing density and degree of dispersion of TiO2 powder were determined by the secondly applied catalyst. Therefore, the addition sequence of catalysts is the most important key to prepare fine powders for photocatalytic use and solar cell. In this study, an acid treatment followed by a base is suggested as best route to obtaining fine size and distribution of particles and high content of anatase phase. 相似文献