首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5692篇
  免费   342篇
  国内免费   1085篇
化学   5915篇
晶体学   15篇
力学   127篇
综合类   50篇
数学   610篇
物理学   402篇
  2024年   9篇
  2023年   23篇
  2022年   56篇
  2021年   79篇
  2020年   155篇
  2019年   120篇
  2018年   134篇
  2017年   208篇
  2016年   283篇
  2015年   222篇
  2014年   251篇
  2013年   506篇
  2012年   298篇
  2011年   314篇
  2010年   357篇
  2009年   390篇
  2008年   380篇
  2007年   366篇
  2006年   348篇
  2005年   332篇
  2004年   294篇
  2003年   230篇
  2002年   224篇
  2001年   195篇
  2000年   187篇
  1999年   163篇
  1998年   142篇
  1997年   151篇
  1996年   112篇
  1995年   101篇
  1994年   110篇
  1993年   101篇
  1992年   81篇
  1991年   48篇
  1990年   34篇
  1989年   30篇
  1988年   31篇
  1987年   15篇
  1986年   8篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1982年   7篇
  1981年   3篇
  1980年   1篇
  1974年   1篇
排序方式: 共有7119条查询结果,搜索用时 15 毫秒
31.
Differential scanning calorimetry and high temperature x-ray diffraction were used to study the perfectly alternating copolymer of ethene and carbon monoxide (polyketone; POKC2). It was found that oriented POK-C2 fibers show a crystalline phase transition at a temperature between 110–125°C with a 10% change in crystalline density. At this temperature, the crystal structure reported recently (POK-α) is transformed to a crystal structure that was reported in the past for room temperature imperfectly alternating polyketone. The latter structure will be designated as POK-β. The influence of chain defects on the crystal structure was studied by synthesizing terpolymers (POK-C2/C3), in which small amounts of propylene-CO units are incorporated into the polymer backbone. The resulting terpolymers differ from the copolymer by the presence of methyl groups randomly distributed along the polyketone backbone chain. Evidence is presented that indicates that the methyl groups are built into the crystal lattice as defects. With more than 5 mole-% propene the terpolymer fibers crystallize exclusively in the β-modification. Below this level the α/β ratio (at room temperature) increases with decreasing amounts of propene. Both as-synthesized and as-spun POK-C2 were found to consist of both POK-α and POK-β; the α/β ratio depends on the method of preparation. Because the drawn POK-C2 fibers studied here consist exclusively of POK-α, the process of spinning and drawing leads to the transformation of unoriented β-rich material into oriented POK-α. © 1995 John Wiley & Sons, Inc.  相似文献   
32.
33.
In this contribution, we demonstrate a new effective methodology for constructing highly efficient and durable poly(p‐phenyleneethynylene) (PPE) containing emissive material with nonaggregating and hole‐facilitating properties through the introduction of hole‐transporting blocks into the PPE system as the grafting coils as well as building the energy donor–acceptor architecture between the grafting coils and the PPE backbone. Poly(2‐(carbazol‐9‐yl)ethyl methacrylate) (PCzEMA), herein, is chosen as the hole‐transporting blocks, and incorporated into the PPE system as the grafting coils via atom transfer radical polymerization. The chemical structure of the resultant copolymer, PPE‐g‐PCzEMA, was characterized by NMR and gel permeation chromatography, showing that the desirable copolymer was obtained with the narrow polydispersity. The increased thermal stability of PPE‐g‐PCzEMA was confirmed by thermogravimetric analysis and differential scanning calorimetry along with its macroinitiator. The optoelectronic properties of this copolymer were studied in detail by ultraviolet‐visible absorption, photoluminescence emission and excitation spectra, and cyclic voltammogram (CV). The results indicate that PPE‐g‐PCzEMA exhibits the solid‐state luminescent property dominated by individual lumophores, and also the energy transfer process from the PCzEMA blocks to the PPE backbone with a relatively higher energy transfer efficiency in the solid‐state compared to that of the solution state. Additionally, the hole‐injection property is greatly facilitated due to the presence of PCzEMA, as confirmed by CV profiles. All these data indicate that PPE‐g‐PCzEMA is a good candidate for use in optoelectronic devices. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3776–3787, 2007  相似文献   
34.
Block copolymers on basis of poly(oxanorbornenes) bearing functional moieties in their side‐chains are prepared via a combination of ROMP‐methods and 1,3‐dipolar‐“click”‐reactions. Starting from N‐substituted‐ω‐bromoalkyl‐oxanorbornenes and alkyl‐/perfluoroalkyl‐oxanorbornenes, block copolymers with molecular weights up to 25,000 g mol?1 were generated. Subsequent nucleophilic exchange‐reactions yielded the block‐copolymers functionalized with ω‐azidoalkyl‐moieties in one block. The 1,3‐azide/alkine‐“click” reactions with a variety of terminal alkynes in the presence of a catalyst system consisting of tetrakis(acetonitrile)hexafluorophosphate copper(I) and tris(1‐benzyl‐5‐methyl‐1H‐ [1,2,3]triazol‐4‐ylmethyl)‐amine furnished the substituted block copolymers in high yields, as proven by NMR‐spectroscopy. The resulting polymers were investigated via temperature‐dependent SAXS‐methods, revealing their microphase separated structure as well as their temperature‐dependent behavior. The presented method offers the generation of a large set of different block‐copolymers from only a small set of starting materials because of the high versatility of the “click” reaction, thus enabling a simple and complete functionalization after the initial polymerization reaction. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 485–499, 2007  相似文献   
35.
Block copolymer micelles and shell cross-linked nanoparticles (SCKs) presenting Click-reactive functional groups on their surfaces were prepared using two separate synthetic strategies, each employing functionalized initiators for the controlled radical polymerization of acrylate and styrenic monomers to afford amphiphilic block copolymers bearing an alkynyl or azido group at the α-terminus. The first route for the synthesis of the azide-functionalized nanostructures was achieved via sequential nitroxide-mediated radical polymerization (NMP) of tert-butyl acrylate and styrene, originating from a benzylic chloride-functionalized initiator, followed by deprotection of the acrylic acids, supramolecular assembly of the block copolymer in water and conversion of the benzylic chloride to a benzylic azide. In contrast, the second strategy utilized an alkynyl-functionalized reversible addition fragmentation transfer (RAFT) agent directly for the RAFT-based sequential polymerization of tetrahydropyran acrylate and styrene, followed by selective cleavage of the tetrahydropyran esters to give the α-alkynyl-functionalized block copolymers. These Click-functionalized polymers, with the functionality located at the hydrophilic polymer termini, were then self-assembled using a mixed-micelle methodology to afford surface-functionalized “Clickable” micelles in aqueous solutions. The optimum degree of incorporation of the Click-functionalized polymers was investigated and determined to be ca. 25%, which allowed for the synthesis of well-defined surface-functionalized nanoparticles after cross-linking selectively throughout the shell layer using established amidation chemistry. Functionalization of the chain ends was shown to be an efficient process under standard Click conditions and the resulting functional groups revealed a more “solution-like” environment when compared to the functional group randomly inserted into the hydrophilic shell layer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5203–5217, 2006  相似文献   
36.
37.
This paper aims at reporting on the synthesis of a heterograft copolymer by combining the “grafting onto” process based on atom transfer radical addition (ATRA) and the “grafting from” process by atom transfer radical polymerization (ATRP). The statistical copolymerization of ε‐caprolactone (εCL) and α‐chloro‐ε‐caprolactone (αClεCL) was initiated by 2,2‐dibutyl‐2‐stanna‐1,3‐dioxepane (DSDOP), followed by ATRA of parts of the chlorinated units of poly(αClεCL‐co‐εCL) on the terminal double bond of α‐MeO,ω‐CH2?CH? CH2? CO2‐poly(ethylene oxide) (PEO). The amphiphilic poly(εCL‐g‐EO) graft copolymer collected at this stage forms micelles as supported by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The unreacted pendant chloro groups of poly(εCL‐g‐EO) were used to initiate the ATRP of styrene with formation of copolymer with two populations of randomly distributed grafts, that is PEO and polystyrene. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6015–6024, 2006  相似文献   
38.
Nitroxide‐mediated radical polymerization (NMRP) of 2‐(dimethylamino)ethyl acrylate (DMAEA) was carried out at 100–120 °C, initiated by MONAMS, an alkoxyamine based on Ntert‐butyl‐N‐(1‐diethyl phosphono‐2,2‐dimethylpropyl)nitroxide, SG1. Controlled polymerization can be achieved by the addition of free SG1 (the initial molar ratio of SG1 to MONAMS ranged from 0.06 to 0.12), giving a linear first‐order kinetic plot up to 55–70% conversion depending on the reaction conditions. The molecular weights show a near linear increase with conversion; however, they deviate to some extent with theoretical values. SG1‐mediated polymerization of DMAEA at 112 °C is also controlled in organic solvents (N,N‐dimethylformide, anisole, xylene). Polymerization rate increases with increasing solvent polarity. Chain transfer to polymer produces ~1 mol % branches in bulk and 1.2–1.9 mol % in organic solvents, typical of those for acrylates. From poly(styrene) (pS) and poly(n‐butyl acrylate) (pBA) macroinitiators, amphiphilic di‐ and triblock copolymers p(S‐b‐DMAEA), p(DMAEA‐b‐S‐b‐DMAEA), p(BA‐b‐DMAEA), and p(DMAEA‐b‐BA‐b‐DMAEA) were synthesized via NMRP at 110 °C. Polymers were characterized by GPC, NMR, surface tension measurements, and DSC. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 414–426, 2006  相似文献   
39.
Free‐radical copolymerizations of N‐vinylcaprolactam (VCL) and glycidyl methacrylate (GMA) were investigated to synthesize temperature‐responsive reactive copolymers with minimized compositional heterogeneity. The average copolymer composition was determined by Fourier transform infrared and nuclear magnetic resonance techniques. The reactivity ratios for VCL and GMA were found to be 0.0365 ± 0.0009 and 6.44 ± 0.36 by the Fineman–Ross method and 0.039 ± 0.006 and 6.75 ± 0.29 by the Kelen–Tudos method, respectively. When prepared by batch polymerization, VCL–GMA copolymers had a highly heterogeneous composition and fractions of different solubilities in water. The use of a gradual feeding technique, which included the sequential addition of more reactive GMA monomer into the reaction, yielded copolymers with much more homogeneous composition. The produced copolymers with 0.9 and 0.11 fractional GMA contents preserved their temperature‐responsive properties and precipitated from aqueous solutions when the temperature exceeded 31 °C. The GMA units in the VCL–GMA copolymers were capable of reacting with amino end‐functionalized poly(ethylene oxide) at room temperature to produce poly(N‐vinylcaprolactam)–poly(ethylene oxide) graft copolymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 183–191, 2006  相似文献   
40.
Amphiphilic biodegradable block copolymers [poly(sebacic anhydride)–poly(ethylene glycol)–poly(sebacic anhydride)] were synthesized by the melt polycondensation of poly(ethylene glycol) and sebacic anhydride prepolymers. The chemical structure, crystalline nature, and phase behavior of the resulting copolymers were characterized with 1H NMR, Fourier transform infrared, gel permeation chromatography, and differential scanning calorimetry. Microphase separation of the copolymers occurred, and the crystallinity of the poly(sebacic anhydride) (PSA) blocks diminished when the sebacic anhydride unit content in the copolymer was only 21.6%. 1H NMR spectra carried out in CDCl3 and D2O were used to demonstrate the existence of hydrophobic PSA domains as the core of the micelle. In aqueous media, the copolymers formed micelles after precipitation from water‐miscible solvents. The effects on the micelle sizes due to the micelle preparation conditions, such as the organic phase, dropping rate of the polymer organic solution into the aqueous phase, and copolymer concentrations in the organic phase, were studied. There was an increase in the micelle size as the molecular weight of the PSA block was increased. The diameters of the copolymer micelles were also found to increase as the concentration of the copolymer dissolved in the organic phase was increased, and the dependence of the micelle diameters on the concentration of the copolymer varied with the copolymer composition. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1271–1278, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号