全文获取类型
收费全文 | 19784篇 |
免费 | 1546篇 |
国内免费 | 1299篇 |
专业分类
化学 | 1018篇 |
晶体学 | 63篇 |
力学 | 3260篇 |
综合类 | 261篇 |
数学 | 15131篇 |
物理学 | 2896篇 |
出版年
2024年 | 28篇 |
2023年 | 210篇 |
2022年 | 256篇 |
2021年 | 318篇 |
2020年 | 434篇 |
2019年 | 477篇 |
2018年 | 447篇 |
2017年 | 534篇 |
2016年 | 587篇 |
2015年 | 455篇 |
2014年 | 811篇 |
2013年 | 1638篇 |
2012年 | 805篇 |
2011年 | 1021篇 |
2010年 | 871篇 |
2009年 | 1169篇 |
2008年 | 1267篇 |
2007年 | 1247篇 |
2006年 | 1100篇 |
2005年 | 974篇 |
2004年 | 870篇 |
2003年 | 830篇 |
2002年 | 774篇 |
2001年 | 653篇 |
2000年 | 642篇 |
1999年 | 542篇 |
1998年 | 580篇 |
1997年 | 448篇 |
1996年 | 367篇 |
1995年 | 273篇 |
1994年 | 253篇 |
1993年 | 201篇 |
1992年 | 194篇 |
1991年 | 171篇 |
1990年 | 150篇 |
1989年 | 96篇 |
1988年 | 92篇 |
1987年 | 85篇 |
1986年 | 84篇 |
1985年 | 84篇 |
1984年 | 96篇 |
1983年 | 60篇 |
1982年 | 81篇 |
1981年 | 60篇 |
1980年 | 69篇 |
1979年 | 59篇 |
1978年 | 42篇 |
1977年 | 36篇 |
1976年 | 42篇 |
1974年 | 12篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
21.
Zi‐Cai Li Tzon‐Tzer Lu Hung‐Tsai Huang Alexander H.‐D. Cheng 《Numerical Methods for Partial Differential Equations》2007,23(1):93-144
In this article we survey the Trefftz method (TM), the collocation method (CM), and the collocation Trefftz method (CTM). We also review the coupling techniques for the interzonal conditions, which include the indirect Trefftz method, the original Trefftz method, the penalty plus hybrid Trefftz method, and the direct Trefftz method. Other boundary methods are also briefly described. Key issues in these algorithms, including the error analysis, are addressed. New numerical results are reported. Comparisons among TMs and other numerical methods are made. It is concluded that the CTM is the simplest algorithm and provides the most accurate solution with the best numerical stability. © 2006 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007 相似文献
22.
Francisco‐Javier Sayas 《Numerical Methods for Partial Differential Equations》2003,19(5):555-570
This article presents and analyzes a simple method for the exterior Laplace equation through the coupling of finite and boundary element methods. The main novelty is the use of a smooth parametric artificial boundary where boundary elements fit without effort together with a straight approximate triangulation in the bounded area, with the coupling done only in nodes. A numerically integrated version of the algorithm is also analyzed. Finally, an isoparametric variant with higher order is proposed. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 19: 555–570, 2003 相似文献
23.
Zhangxin Chen 《Numerical Methods for Partial Differential Equations》2002,18(2):203-217
In this article we prove uniform convergence estimates for the recently developed Galerkin‐multigrid methods for nonconforming finite elements for second‐order problems with less than full elliptic regularity. These multigrid methods are defined in terms of the “Galerkin approach,” where quadratic forms over coarse grids are constructed using the quadratic form on the finest grid and iterated coarse‐to‐fine intergrid transfer operators. Previously, uniform estimates were obtained for problems with full elliptic regularity, whereas these estimates are derived with less than full elliptic regularity here. Applications to the nonconforming P1, rotated Q1, and Wilson finite elements are analyzed. The result applies to the mixed method based on finite elements that are equivalent to these nonconforming elements. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 203–217, 2002; DOI 10.1002/num.10004 相似文献
24.
The motion of a moored floating body under the action of wave forces, which is influenced by fluid forces, shape of the floating body and mooring forces, should be analysed as a complex coupled motion system. Especially under severe storm conditions or resonant motion of the floating body it is necessary to consider finite amplitude motions of the waves, the floating body and the mooring lines as well as non-linear interactions of these finite amplitude motions. The problem of a floating body has been studied on the basis of linear wave theory by many researchers. However, the finite amplitude motion under a correlated motion system has rarely been taken into account. This paper presents a numerical method for calculating the finite amplitude motion when a floating body is moored by non-linear mooring lines such as chains and cables under severe storm conditions. 相似文献
25.
This paper studies the application of the continuous sensitivity equation method (CSEM) for the Navier–Stokes equations in the particular case of shape parameters. Boundary conditions for shape parameters involve flow derivatives at the boundary. Thus, accurate flow gradients are critical to the success of the CSEM. A new approach is presented to extract accurate flow derivatives at the boundary. High order Taylor series expansions are used on layered patches in conjunction with a constrained least‐squares procedure to evaluate accurate first and second derivatives of the flow variables at the boundary, required for Dirichlet and Neumann sensitivity boundary conditions. The flow and sensitivity fields are solved using an adaptive finite‐element method. The proposed methodology is first verified on a problem with a closed form solution obtained by the Method of Manufactured Solutions. The ability of the proposed method to provide accurate sensitivity fields for realistic problems is then demonstrated. The flow and sensitivity fields for a NACA 0012 airfoil are used for fast evaluation of the nearby flow over an airfoil of different thickness (NACA 0015). Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
26.
Ram K. Ganesh 《国际流体数值方法杂志》1991,13(5):557-578
The total drag force on the surface of a body, which is the sum of the form drag and the skin friction drag in a 2D domain, is numerically evaluated by integrating the energy dissipation rate in the whole domain for an incompressible Stokes fluid. The finite element method is used to calculate both the energy dissipation rate in the whole domain as well as the drag on the boundary of the body. The evaluation of the drag and the energy dissipation rate are post-processing operations which are carried out after the velocity field and the pressure field for the flow over a particular profile have been obtained. The results obtained for the flow over three different but constant area profiles—a circle, an ellipse and a cross-section of a prolate spheroid—with uniform inlet velocity are presented and it is shown that the total drag force times the velocity is equal to the total energy dissipation rate in the entire finite flow domain. Hence, by calculating the energy dissipation rate in the domain with unit velocity specified at the far-field boundary enclosing the domain, the drag force on the boundary of the body can be obtained. 相似文献
27.
Li Changjun; Li Zheng; Evans David J.; Zhang Tie 《IMA Journal of Numerical Analysis》2003,23(4):581-592
Golub et al. (2001, BIT, 41, 7185) gave a generalizedsuccessive over-relaxation method for the augmented systems.In this paper, the connection between the SOR-like method andthe preconditioned conjugate gradient (PCG) method for the augmentedsystems is investigated. It is shown that the PCG method isat least as accurate (fast) as the SOR-like method. Numericalexamples demonstrate that the PCG method is much faster thanthe SOR-like method. 相似文献
28.
This paper proposes a fully three‐dimensional non‐linear Euler methodology for solving aerodynamic and acoustic problems in the presence of strong shocks and rarefactions. It uses a discontinuous Galerkin method (DGM) within the element, and a Riemann solver (HLLC) at the boundaries to propagate rarefactions while preserving the entropy condition and capturing shocks with no spurious oscillations. This approach is thought to marry the best aspects of finite element and finite volume methods, achieving conservation while not requiring the solution of a large matrix. Examples in which shock and rarefaction waves are well captured are presented and the propagation of acoustic pulses is well demonstrated. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
29.
Lisa F. Shatz 《国际流体数值方法杂志》2004,44(2):147-174
The indirect boundary element method was used to study the hydrodynamics of oscillatory viscous flow over prolate and oblate spheroids, and over hemispheroidal bodies hinged to a plate. Analytic techniques, such as spheroidal coordinates, method of images, and series representations, were used to make the numerical methods more efficient. A novel method for computing the hydrodynamic torque was used, since for oscillatory flow the torque cannot be computed directly from the weightings. Instead, a Green's function for torque was derived to compute the torque indirectly from the weightings. For full spheroids, the method was checked by comparing the results to exact solutions at low and high frequencies, and to results computed using the singularity method. For hemispheroids hinged to a plate, the method for low frequencies was checked by comparing the results to previous results, and to exact solutions at high frequencies. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
30.
In this paper, a projection method is presented for solving the flow problems in domains with moving boundaries. In order to track the movement of the domain boundaries, arbitrary‐Lagrangian–Eulerian (ALE) co‐ordinates are used. The unsteady incompressible Navier–Stokes equations on the ALE co‐ordinates are solved by using a projection method developed in this paper. This projection method is based on the Bell's Godunov‐projection method. However, substantial changes are made so that this algorithm is capable of solving the ALE form of incompressible Navier–Stokes equations. Multi‐block structured grids are used to discretize the flow domains. The grid velocity is not explicitly computed; instead the volume change is used to account for the effect of grid movement. A new method is also proposed to compute the freestream capturing metrics so that the geometric conservation law (GCL) can be satisfied exactly in this algorithm. This projection method is also parallelized so that the state of the art high performance computers can be used to match the computation cost associated with the moving grid calculations. Several test cases are solved to verify the performance of this moving‐grid projection method. Copyright © 2004 John Wiley Sons, Ltd. 相似文献