首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585篇
  免费   0篇
  国内免费   20篇
化学   535篇
力学   1篇
综合类   12篇
物理学   57篇
  2024年   4篇
  2023年   8篇
  2022年   8篇
  2021年   9篇
  2020年   9篇
  2019年   15篇
  2018年   12篇
  2017年   17篇
  2016年   17篇
  2015年   18篇
  2014年   24篇
  2013年   23篇
  2012年   21篇
  2011年   31篇
  2010年   17篇
  2009年   28篇
  2008年   25篇
  2007年   32篇
  2006年   16篇
  2005年   15篇
  2004年   14篇
  2003年   37篇
  2002年   40篇
  2001年   32篇
  2000年   18篇
  1999年   14篇
  1998年   25篇
  1997年   15篇
  1996年   19篇
  1995年   22篇
  1994年   10篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有605条查询结果,搜索用时 15 毫秒
171.
声化学消解测定环境水样中的化学需氧量   总被引:4,自引:0,他引:4  
研制了简易、安全的声化学密闭消解器 ,并用于不同环境水样的消化处理。探讨了声频、声强、消化助剂、温度等因素对其化学需氧量测定结果的影响。与K2 Cr2 O7 H2 SO4 回流消解法相比 ,此法大大加快了消解速度 ,少用或不用消化助剂。用于实际水样 (COD 15 0 2 0 0 0mg·L- 1)的分析 ,结果表明 ,标准偏差≤ 6.5 % ,加标回收率为 96% 12 0 % ,较为满意。  相似文献   
172.
子种绿A与锡反应分光光度法测定痕量锡   总被引:2,自引:0,他引:2  
探讨了在氨性介质中子种绿A(C37H35N2O6S2Na) 染料与锡(IV) 反应形成离子缔合物的最佳条件,建立了测定痕量锡的新方法。子种绿A—Sn(IV) 缔合物的最大吸收波长位于630 nm ,表观摩尔吸光系数ε630 = 1.7×106 L/(mol·cm),锡浓度在0~80 ug/L 范围内遵守比耳定律。用于水样与罐头食品分析,结果令人满意。  相似文献   
173.
铋膜电极电位溶出法测定痕量铅、镉、锌   总被引:38,自引:0,他引:38  
李建平  彭图治  张雪君 《分析化学》2002,30(9):1092-1095
研究了用铋膜电极替代汞膜电极测定痕量重金属元素铅、镉和锌的电位溶出法。实验了同位镀铋膜及测定重金属特别是痕量铅的条件。实验结果表明:铅、镉、锌在铋膜电极上可得到灵敏的电位溶出峰,峰高和溶出电位与汞膜电极法相近,使用铋膜电极可避免使用汞电极带来的环境污染。利用铋膜电极电位溶出法测定了水样及血样中痕量铅的含量。  相似文献   
174.
巯基棉富集—火焰原子吸收光谱法测定水中铁铜铅镉   总被引:7,自引:0,他引:7  
详细地考查了巯基棉富集Fe(Ⅲ)、Cu(Ⅱ)、Pb(Ⅱ)、Cd(Ⅱ)的条件.发现Fe(Ⅲ)在pH值为5~8范围条件下能被巯基棉定量吸附.采用pH值5.5±0.5可同时富集以上四种离子,以2mol·L~(-1)盐酸5ml洗脱.用火焰原子吸收光谱法进行测定,相对标准偏差小于5.5%.加标回收率为98.7 %~101.1%,  相似文献   
175.
张建华  黄颖  陈晓秋  陈金花  李辉  陈国南 《色谱》2009,27(6):799-803
建立了简便、快速、有效的分散液-液微萃取-高效液相色谱-荧光检测(DLLME-HPLC-FLD)测定环境水样中15种多环芳烃(PAHs)的方法。重点探讨了萃取剂的种类和用量、分散剂的种类和用量以及萃取时间等对PAHs萃取效率的影响。在优化的条件下,评价了方法的可靠性。15种PAHs在0.01~10 μg/L范围内呈良好的线性关系,相关系数r均不小于0.9913,峰面积的相对标准偏差(RSD)在2.3%~4.7%之间(n=6)。在优化条件下,富集因子和萃取回收率良好,分别为674~1032和67.4%~103.2%,15种PAHs的检出限(S/N=3)在0.0003~0.002 μg/L之间。建立的方法应用于敖江水样中PAHs的检测,平均加标回收率在79.5%~92.3%之间,RSD在4.3%~6.7%范围内(n=5)。该方法适用于环境水样中痕量PAHs的分析。  相似文献   
176.
建立了一种全自动固相萃取/气相色谱-质谱联用测定环境水样中4种有机紫外防护剂和5种人工合成香料的方法.采用Cleanert C8柱对样品进行净化及浓缩,气相色谱-质谱法以选择离子流模式检测,外标法定量.在优化的实验条件下,9种目标化合物色谱峰分离良好,检出限和定量下限分别为5.15 ~85.2 ng/L和17.2 ~284 ng/L.在实际环境水样检测中的添加回收率为76% ~115%.添加0.20 μg/L混合标准的环境水样,其检测相对标准偏差为2.9% ~9.6%.  相似文献   
177.
分散液相微萃取-高效液相色谱法测定水中丙溴磷农药   总被引:3,自引:0,他引:3  
应用分散液相微萃取(DLLME)技术,建立了水中丙溴磷农药的高效液相色谱(HPLC)分析方法。考察了萃取剂、分散剂、萃取剂体积、分散剂体积、时间、盐度和pH等因素对分散液相微萃取的影响,并确定了最佳萃取条件为:15μL三氯乙烷(萃取剂)和700μL乙腈(分散剂),混匀后,加入水样,室温静置2min,以3000r/min离心2min,吸取3μL沉积相,进行HPLC分析。在此优化条件下,富集倍数达到270,检出限为2μg/L,相对标准偏差(RSD)为1.4%~6.1%(n=6);标准加入回收率为81.9%~118%。本方法操作简单,成本低,结果令人满意。  相似文献   
178.
何书海  曹小聪  吴海军  李腾崖  张鸣珊  梁焱  陈表娟 《色谱》2019,37(11):1179-1184
建立了一种简便、直接进样的超高效液相色谱-三重四极杆质谱法(UPLC-MS/MS)快速测定环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利的残留。环境水样经0.22 μm滤膜过滤或冷冻离心去除杂质后,滤液无需衍生化直接进行定量分析。4种农药通过Metrosep A Supp 5柱(150 mm×4.0 mm,5 μm)分离,以碳酸氢铵-氨水溶液为流动相进行梯度洗脱,在负离子模式下以MRM方式进行检测。结果表明,4种农药在0.50~50.0 μg/L范围内相关系数(r)均大于0.999,线性关系良好,方法检出限为0.05~0.09 μg/L。实际水样在低、中、高3种加标浓度水平下,回收率分别为76.3%~108%、83.0%~107%和87.0%~105%,相对标准偏差分别为2.0%~12.3%、2.4%~5.6%和2.7%~6.8%。使用该方法对海南省34个水样进行测定,其中30个饮用水源地水样中均未检出4种农药,槟榔园附近3个水样均检出草甘膦和氨甲基膦酸,香蕉园附近的1个水样检出草铵膦和氨甲基膦酸。与传统的衍生化方法比较,该方法操作简便,重现性好,准确性高,不受基体干扰,适用于环境水样中草甘膦、氨甲基膦酸、草铵膦及乙烯利的残留检测。  相似文献   
179.
环境水体中亚硝态氮、硝态氮和总氮的液相色谱测定   总被引:2,自引:0,他引:2  
建立了环境水体中NO2-、NO3-及总氮含量的液相色谱测定方法.采用Hypersil ODS(5μm,250mm×4.6mm i.d.)色谱柱;流动相:17.5mmoL/L KH2PO4-2mmol/L H3PO4缓冲液(pH3.5)-乙腈(体积比92.5:7.5);流速:0.8mL/min;柱温:30℃;紫外检测器:波长204nm.结果表明:水体中NO2-和NO3-的线性范围(以N计):1~80ng,r=0.999 9;方法检出限:NO2-0.4ng、NO3-0.09ng;回收率为NO2-99.2%~102.4%、NO3-98.7%~99.3%,RSD为0.79%和0.25%.  相似文献   
180.
杨秀敏  王志  王春  韩丹丹  陈永艳  宋双居 《色谱》2007,25(3):362-366
应用中空纤维液相微萃取(HP-LPME)技术建立了水样中呋喃丹、西维因、异丙威和乙霉威的高效液相色谱分析方法。对影响HP-LPME的实验条件进行了优化。采用Accurel Q3/2聚丙烯中空纤维,以甲苯为萃取溶剂,于室温、搅拌速度为720 r/min条件下在4.5 mL样品溶液中萃取20 min,萃取物在室温下经氮气流吹干后用流动相溶解进样。采用Baseline C18分离柱(4.6 mm×250 mm,5.0 μm),以甲醇-水(体积比为60∶40) 为流动相,流速为1.0 mL/min。呋喃丹、西维因、异丙威和乙霉威的检测波长分别为200,223,200和208 nm。该方法对4种氨基甲酸酯类农药的富集倍数均大于45倍;4种氨基甲酸酯类农药在10~100 μg/L质量浓度范围内,其质量浓度与峰面积之间有良好的线性关系,相关系数均大于0.99;呋喃丹、西维因、异丙威和乙霉威的检出限(S/N=3)分别为5,1,5和3 μg/L;实际水样中的加标回收率为82.0%~102.2%,相对标准偏差为2.0%~6.2%(n=6)。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号