全文获取类型
收费全文 | 224篇 |
免费 | 18篇 |
国内免费 | 21篇 |
专业分类
化学 | 37篇 |
力学 | 14篇 |
综合类 | 32篇 |
数学 | 82篇 |
物理学 | 98篇 |
出版年
2024年 | 7篇 |
2023年 | 20篇 |
2022年 | 30篇 |
2021年 | 27篇 |
2020年 | 14篇 |
2019年 | 19篇 |
2018年 | 12篇 |
2017年 | 10篇 |
2016年 | 7篇 |
2015年 | 5篇 |
2014年 | 17篇 |
2013年 | 7篇 |
2012年 | 7篇 |
2011年 | 9篇 |
2010年 | 6篇 |
2009年 | 7篇 |
2008年 | 5篇 |
2007年 | 4篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 5篇 |
2003年 | 3篇 |
2001年 | 5篇 |
2000年 | 4篇 |
1999年 | 1篇 |
1997年 | 3篇 |
1996年 | 1篇 |
1994年 | 1篇 |
1992年 | 4篇 |
1991年 | 3篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1988年 | 1篇 |
1987年 | 1篇 |
1986年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 3篇 |
1979年 | 1篇 |
1959年 | 1篇 |
排序方式: 共有263条查询结果,搜索用时 0 毫秒
71.
传统的土地利用分类方法大多基于对资料或影像的人工解译,存在一定的局限性。近年来,结合空间大数据和自然语言处理技术进行低成本快速的土地资源管理已成为研究热点。以美国纽约市曼哈顿区为例,提出了融合遥感影像和社会感知数据的城市土地利用分类方法。从遥感影像中提取光谱特征、从推特数据中提取用户活动时空和主题特征,基于随机森林法和深度神经网络法,构建了细粒度的城市土地利用分类模型。通过对比不同特征组合分类方法的精度,得到结合光谱特征和用户活动时空、主题特征的深度神经网络方法的结果最优,总体精度达82.65%,Kappa系数为70.1%。结果表明,社会感知数据中隐含的用户活动时空模式和活动主题信息均有助于提高城市土地利用分类的精度,而神经网络法可有效融合多源数据,为快速、低成本获取城市土地利用信息提供了新的途径。 相似文献
72.
李长春 《数学的实践与认识》2017,(7):70-79
商品需求预测对于电商企业意义重大,对阿里电商平台的交易数据进行挖掘以获取有效特征,利用特征建立模型对未来两周这些商品的需求进行动态预测,并基于预测结果和成本最小的原则提出分仓规划建议.预测模型选择随机森林做回归,然后在残差分析的基础上建立报童模型求解分仓的库存规划.对特征数量众多的电商交易数据挖掘所建立的模型有助于电商企业进行有效的商品需求预测并据此制定成本更低的分仓规划. 相似文献
73.
74.
应用相似性系数分析方法,对新疆阿勒泰山天山地衣植物区系间的相似性进行定量研究.结果表明,阿勒泰山与天山地衣植物区系之间相似性较大,其科、属、种的相似性系数分别为85.71%,56.84%和39.14%,表明阿勒泰山与天山地衣植物区系有较近的亲缘关系.该结果与对两大山地气候条件的分析结果相一致. 相似文献
75.
周子康 《浙江大学学报(理学版)》1987,14(1):102-108
探讨了浙江山地农业气候资源分布的四个特征:垂直地带性、水平地段性、空间季相位移性和多层次立体网络性及其与农业生产的关系。 相似文献
76.
森林蓄积量是林分调查中重要因子,是评价森林数量和质量的重要指标。传统森林蓄积量实测方法耗时费力、效率低下,多元线性回归遥感反演方法精度较低,难以达到精准林业要求。机器学习是一种利用训练数据,进行自我改进、自动提升性能的方法,可以任意逼近非线性系统,提高模型预测精度。以鹫峰林场森林为研究对象, 综合考虑影像光谱因子、纹理因子、地形因子,采用机器学习中的BP神经网络、最小二乘支持向量机、随机森林方法构建了森林蓄积量多光谱估测模型BP-FSV,LSSVM-FSV和RF-FSV,并在Matlab2014a中编程实现。旨在从建模因子选择和模型方法建立两个方面,优化建模因子特征提取,提高森林蓄积量模型预测精度。以角规观测样地实测数据、森林小班二类调查数据、林相图数据为基础,使用以上三种模型结合Landsat8 OLI多光谱数据分林型进行了森林蓄积量反演建模预测。以决定系数R2和均方根误差RMSE为指标,分析了三种反演模型的训练能力和预测能力。研究结果表明:利用3种机器学习方法构建的结合光谱因子、地形因子、纹理因子反演模型能够提高森林蓄积量的预测精度。以上模型中,RF-FSV模型在针、阔、混三种林型中都表现出较强的预测能力,高于BP-FSV模型,高于或接近于LSSVM-FSV模型。RF-FSV模型在训练阶段,R2和RMSE针叶林中为0.839和13.953 3,阔叶林中为0.924和7.634 1,混交林中为0.902和12.153 9,预测阶段R2和RMSE在针叶林中为0.816和15.630 1,阔叶林中为0.913和4.890 2,混交林中为0.865和9.344 1。RF-FSV模型建模精度和预测精度较高,为森林蓄积量遥感反演估测提供了一种新的方法。 相似文献
77.
近红外光谱对天然岩石中矿物成分含量测定的研究 总被引:3,自引:0,他引:3
使用近红外光谱仪获取由高岭土、白云母和蒙脱石三种岩石矿物粉末混合成的模拟天然岩石样本的近红外漫反射光谱信息,通过标准归一化(standard normal variable)的方法对光谱数据进行预处理,采用随机森林(random forest)进行数学建模,对岩石样本的组成成分进行预测,预测得到三种岩石成分最小均方根误差分别为:0.088 0,0.095 6,0.121 2。实验结果表明应用近红外漫反射光谱来测定天然岩石中各种矿物成分的含量是可行的,为今后岩石成分的快速检测提供了理论依据。 相似文献
78.
高光谱成像的柑橘病虫害叶片识别方法 总被引:1,自引:0,他引:1
WU Ye-lan CHEN Yi-yu LIAN Xiao-qin LIAO Yu GAO Chao GUAN Hui-ning YU Chong-chong 《光谱学与光谱分析》2021,41(12):3837-3843
为监测柑橘生长状况,实现病虫害无损识别,利用高光谱成像技术和机器学习方法进行柑橘病叶分类研究。使用高光谱成像仪采集46片柑橘正常叶、46片溃疡病叶、80片除草剂危害叶、51片红蜘蛛叶和98片煤烟病叶的高光谱图像,在478~900 nm光谱范围内对每个叶片一个或多个发病区提取5×5的感兴趣区域(ROI),将ROI内每个像素的反射率值作为光谱信息,则一个ROI得到25个光谱信息样本,最终五类叶片共得到13250个光谱样本。利用随机法将全部样本划分为9 938个训练集和3 312个测试集。分别采用一阶求导(1stDer)、多元散射校正(MSC)和标准正态变换(SNV)三种方法对原始光谱信息进行预处理,对不同预处理方法后的数据采用主成分分析法(PCA)提取特征波长。1st Der预处理后得到7个特征波长,分别是520.2,689.0,704.8,715.4,731.2,741.8和757.6 nm;MSC和SNV预处理后得到7个相同的特征波长,分别是551.9,678.5,704.8,710.1,725.9,731.2和757.6 nm;原始光谱得到7个特征波长,分别是525.5,678.5,710.1,720.7,725.9,757.6和762.9 nm。分析PCA后的样本分布散点图可知,正常叶片、溃疡病叶片和红蜘蛛叶片样本有一定程度聚类,除草剂叶片和煤烟病叶片样本有大量重叠,仅依据PCA不能完成病虫害叶片的识别。对全波段(FS)和PCA特征波长数据在不同预处理方法下进行支持向量机(SVM)和随机森林(RF)建模,结果表明:数据在1stDer预处理方法下识别效果最佳,1st Der-FS-SVM模型总分类精度(OA)为95.98%,Kappa系数为0.948 2,1st Der-FS-RF模型OA为91.42%,Kappa系数为0.889 2,1stDer-PCA-SVM模型OA为90.82%,Kappa系数为0.881 6,1stDer-PCA-RF模型的OA为91.79%,Kappa系数为0.894;对PCA选择的特征波长数据建模,SVM和RF模型下识别率均达到84%,全波段下模型识别率在88%以上,FS数据建模效果优于PCA特征波长。研究结果表明,高光谱成像技术结合机器学习方法进行柑橘叶片分类是可行且有效的,为柑橘病虫害的无损准确识别提供理论根据。 相似文献
79.
80.
日光诱导叶绿素荧光(SIF)能够敏感反映作物病害胁迫信息,然而冠层几何结构等因素严重影响了SIF对植被光合功能变化及其受胁迫状况的捕捉能力.为此,将能够敏感反映作物群体生物量的归一化差值植被指数(NDVI)和MERIS陆地叶绿素指数(MTCI)与SIFP相融合(SIFP-NDVI,SIFP-MTCI,SIFP-NDVI... 相似文献