首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4946篇
  免费   674篇
  国内免费   1087篇
化学   3165篇
晶体学   41篇
力学   323篇
综合类   122篇
数学   66篇
物理学   2990篇
  2024年   53篇
  2023年   179篇
  2022年   240篇
  2021年   255篇
  2020年   145篇
  2019年   220篇
  2018年   99篇
  2017年   231篇
  2016年   230篇
  2015年   287篇
  2014年   445篇
  2013年   315篇
  2012年   315篇
  2011年   296篇
  2010年   259篇
  2009年   315篇
  2008年   320篇
  2007年   264篇
  2006年   253篇
  2005年   214篇
  2004年   218篇
  2003年   210篇
  2002年   196篇
  2001年   140篇
  2000年   132篇
  1999年   115篇
  1998年   118篇
  1997年   97篇
  1996年   80篇
  1995年   110篇
  1994年   86篇
  1993年   63篇
  1992年   56篇
  1991年   42篇
  1990年   44篇
  1989年   36篇
  1988年   16篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有6707条查询结果,搜索用时 55 毫秒
991.
朱雨霜  桂林  朱玉绚 《光学学报》2019,39(7):357-362
针对基于射频非平衡马赫-曾德尔干涉仪的光纤布拉格光栅传感器波长解调系统的特性展开研究,实验测量了由非相干光损耗、器件插损及光纤光栅的反射谱宽引起的系统的输出功率衰减。提出选取某个特定微波频率输出强度,针对一定量的样本观测值,采用最大射频强度判别法进行数据处理的完整方法。实验还通过描绘各频率点输出强度最大值得到该波长解调系统频率响应,以119.96 MHz作为调制频率得到0.1692 dB/℃的传感灵敏度。本实验对于非相干光与微波光子滤波器在光纤传感应用过程中的性能改进与可行性研究具有实际参考意义。  相似文献   
992.
石墨相氮化碳(g-C3N4)荧光纳米材料具有原料便宜、制备容易、荧光量子产率高、光学稳定性好、毒性低等优点,并且避免有机荧光染料复杂的合成步骤或者金属半导体量子点对环境潜在的危害,这些优点使得g-C3N4纳米材料成为新兴的荧光探针用于检测金属离子。最近,已有文献报道重金属汞离子能够高灵敏高选择性地猝灭g-C3N4量子点的荧光,加入碘离子能够提取被键合的汞离子形成碘化汞(HgI2)进而恢复g-C3N4量子点的荧光,从而建立一种高灵敏检测碘离子的荧光传感器。然而,该方法依然需要重金属汞离子的参与,限制了该方法的推广应用。通过硝酸氧化块体g-C3N4并结合水热法处理制备了一种水溶性好、荧光强度高的g-C3N4量子点。该量子点的荧光发射波长位于368 nm,且其荧光发射波长不随激发波长的改变而改变,表明该量子点的尺寸比较均一。笔者发现碘离子在220 nm处有一个较强的吸收峰,与该量子点的激发光谱(中心波长245 nm)具有较大的重叠,从而产生内滤效应引起该量子点的荧光发生猝灭。利用这一性质,构建了一种选择性检测碘离子的新型荧光传感器。在最优检测条件下,g-C3N4量子点的荧光猝灭强度(ΔF)与碘离子浓度(X,μmol·L-1)在10~400 μmol·L-1之间具有良好的线性关系,线性方程为ΔF=0.325 79X+6.039 05(R2=0.999 5),检出限为5.0 μmol·L-1。通过“混合即检测”并且不需要借助与重金属离子的配位作用就能够检测碘离子,因此该方法具有快速、环保以及操作简便等优点。  相似文献   
993.
采用电泳沉积法,成功在玻碳电极(GCE)表面制备了一层ZIF-8材料薄膜,再在其表面滴涂一层全氟化树脂溶液(Nafion),形成ZIF-8/Nafion复合膜,用于构建检测高倍甜味剂新橙皮苷二氢查耳酮(NHDC)的电化学传感器。利用电化学交流阻抗(EIS)技术对该传感器进行表征,采用循环伏安法(CV)研究NHDC在ZIF-8/Nafion电极表面的电化学行为,并优化实验条件。NHDC在ZIF-8/Nafion膜上有灵敏的响应。采用差分脉冲伏安法(DPV)建立了定量检测NHDC的方法,方法线性范围为0.16~160μmol/L,检出限为56 nmol/L。该方法检测饮料中NHDC的加标回收率范围为99.0%~101.3%。  相似文献   
994.
冯蓉  吴静 《分析试验室》2024,(2):179-194
共价有机框架(COFs)材料是一类由轻质元素(C, O, N, B等)通过强共价键连接而成的新兴结晶多孔材料。COFs因其可调孔径、永久孔隙率、拓扑可设计性等优点,被广泛用于电化学传感领域。金属纳米粒子、碳材料、金属有机框架、酶等功能材料与COFs复合,可以显著提高电化学传感器的分析性能,实现高灵敏度和选择性检测。本综述阐述了基于COFs的电化学传感器的最新研究进展,总结了制备方法,并对其传感机制进行了解释。介绍了新型COFs材料的设计和合成,以及基于新型检测模式的COFs电化学传感器的研究进展。  相似文献   
995.
针对现有行人室内定位导航系统定位精度差的问题,设计了一种压力传感器辅助微惯性测量单元的多条件约束零速修正方法。将微惯性测量单元和压力传感器固连在鞋上,用来测量人体脚部运动信息。在经典捷联解算基础上通过对行走时微惯性测量单元和压力传感器的统计特性进行分析,对加速度模值、滑动方差、角速度模值、足底压力设定阈值,用以检测行走过程中的零速区间,通过基于零速修正的卡尔曼滤波估计姿态误差、速度误差和位置误差,反馈校正后对微惯性测量单元的累积误差进行修正。最后通过对比试验证明了压力传感器辅助下的零速修正方法提高了系统导航定位精度,步行和跑动时的水平定位精度优于1%D。  相似文献   
996.
电阻式应变传感器应用广泛, 可将位移、 压力、 加速度等非电物理量转换成电阻变化, 从而进行信息采 集. 利用大学物理和物理实验课程中包含的基础知识, 分析电阻应变式传感器的原理并介绍实际使用的典型实例, 以期为大学物理教学提供一个综合的应用型案例  相似文献   
997.
古启蒙 《物理通报》2017,36(5):97-99
利用电子、 传感器技术和L a b v i e w软件研制了一个成本低、 实用性强的基于声卡和L a b v i e w软件的摩 擦力测量装置, 克服了传统摩擦力实验教学中读数不准, 难以控制匀速、 很难观察到瞬间变化的过程等缺点, 实现 了定性研究与定量研究相结合. 实验操作简单, 现象明显直观, 为摩擦力实验的有效教学提供了一个新的方式  相似文献   
998.
金桐宇  安宇  张帆  何品刚 《化学学报》2017,75(11):1115-1120
细胞定向行为在皮肤、骨骼等修复和再生中起着非常重要的作用.本文首次采用交流阻抗传感技术实时监测人真皮成纤维细胞(HFF)和人永生化表皮细胞(HaCaT)在纳米沟槽(宽度:200 nm,周期:400 nm,深度:70 nm)上的定向行为.结果表明,HFF细胞在纳米沟槽上先进行定向排列,再发生胞体的延长;HaCaT细胞无定向行为的产生,其粘附和铺展得到了延缓.与平面电极相比,HFF细胞在纳米沟槽上产生的交流阻抗信号(NI值)更大,前期定向排列比后期胞体延长引起的NI值变化更显著,且NI值与定向排列的细胞百分比之间存在着良好的线性关系;HaCaT细胞在纳米沟槽上的NI值更小,且粘附比铺展过程对NI值变化的影响更大.本文的研究将为复合型细胞传感器的发展提供思路和支持.  相似文献   
999.
提出并制备了一种基于本征倏逝波原理的温度及葡萄糖溶液浓度传感器.通过研究腐蚀包层厚度与透射光谱之间的关系,确定较为合适的腐蚀厚度.将标准单模光纤包层腐蚀至2.4μm,利用光纤倏逝波对外界介质变化敏感的原理,通过测量输出光功率的变化量实现温度及葡萄糖溶液浓度传感.实验结果表明:传感器在1070℃的温度范围内具有9.58×10~(-3) dBm/℃的灵敏度,线性度达到99.36%;在葡萄糖溶液03%的浓度范围内具有0.126dBm/(g/L)的灵敏度,线性度达到97.95%.该传感器的响应时间小于30s,具有操作简便、测量准确度高、重复性好、适用范围广等优点,具备良好的应用价值.  相似文献   
1000.
提出一种基于铜沉积石墨烯涂层光子晶体光纤马赫-曾德干涉的硫化氢气敏传感器.将45mm光子晶体光纤两端与单模光纤进行拉锥熔接,使得光子晶体光纤的空气孔熔接时形成塌陷层,更好地激发包层模式,形成基于马赫-曾德结构的干涉仪.采用单层石墨烯粉体,加入异丙醇分散液,反复浸涂至光子晶体光纤包层表面形成石墨烯涂层,并沉积铜纳米颗粒,使传感器对硫化氢气体具有高的响应度.实验结果表明,在硫化氢气体浓度为0~60ppm范围内,随着被测气体浓度不断增大,其输出光谱呈现明显蓝移,传感器灵敏度为0.042 03nm/ppm,且线性度良好.该传感器成本低、灵敏度高、结构简单,适用于低浓度硫化氢气体的在线监测.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号