首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   552篇
  免费   52篇
  国内免费   12篇
化学   7篇
力学   295篇
综合类   3篇
数学   192篇
物理学   119篇
  2023年   4篇
  2022年   9篇
  2021年   5篇
  2020年   5篇
  2019年   14篇
  2018年   11篇
  2017年   20篇
  2016年   20篇
  2015年   18篇
  2014年   27篇
  2013年   45篇
  2012年   24篇
  2011年   44篇
  2010年   25篇
  2009年   45篇
  2008年   29篇
  2007年   38篇
  2006年   32篇
  2005年   27篇
  2004年   29篇
  2003年   22篇
  2002年   24篇
  2001年   17篇
  2000年   18篇
  1999年   13篇
  1998年   8篇
  1997年   13篇
  1996年   14篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1989年   1篇
  1982年   1篇
  1957年   1篇
排序方式: 共有616条查询结果,搜索用时 0 毫秒
61.
基于非结构化同位网格的SIMPLE算法   总被引:4,自引:1,他引:4  
通过基于非结构化网格的有限体积法对二维稳态Navier—Stokes方程进行了数值求解。其中对流项采用延迟修正的二阶格式进行离散;扩散项的离散采用二阶中心差分格式;对于压力-速度耦合利用SIMPLE算法进行处理;计算节点的布置采用同位网格技术,界面流速通过动量插值确定。本文对方腔驱动流、倾斜腔驱动流和圆柱外部绕流问题进行了计算,讨论了非结构化同位网格有限体积法在实现SIMPLE算法时,迭代次数与欠松弛系数的关系、不同网格情况的收敛性、同结构化网格的对比以及流场尾迹结构。通过和以往结果比较可知,本文的方法是准确和可信的。  相似文献   
62.
We propose a characteristic finite element discretization of evolutionary type convection-diffusion optimal control problems. Nondivergence-free velocity fields and bilateral inequality control constraints are handled. Then some residual type a posteriori error estimates are analyzed for the approximations of the control, the state, and the adjoint state. Based on the derived error estimators, we use them as error indicators in developing efficient multi-set adaptive meshes characteristic finite element algorithm for such optimal control problems. Finally, one numerical example is given to check the feasibility and validity of multi-set adaptive meshes refinements.  相似文献   
63.
Adaptive mesh refinement (AMR) shows attractive properties in automatically refining the flow region of interest, and with AMR, better prediction can be obtained with much less labor work and cost compared to manually remeshing or the global mesh refinement. Cartesian AMR is well established; however, AMR on hybrid unstructured mesh, which is heavily used in the high‐Reynolds number flow simulation, is less matured and existing methods may result in degraded mesh quality, which mostly happens in the boundary layer or near the sharp geometric features. User intervention or additional constraints, such as freezing all boundary layer elements or refining the whole boundary layer, are required to assist the refinement process. In this work, a novel AMR strategy is developed to handle existing difficulties. In the new method, high‐order unstructured elements are first generated based on the baseline mesh; then the refinement is conducted in the parametric space; at last, the mesh suitable for the solver is output. Generating refined elements in the parametric space with high‐order elements is the key of this method and this helps to guarantee both the accuracy and robustness. With the current method, 3‐dimensional hybrid unstructured mesh of huge size and complex geometry can be automatically refined, without user intervention nor additional constraints. With test cases including the 2‐dimensional airfoil and 3‐dimensional full aircraft, the current AMR method proves to be accurate, simple, and robust.  相似文献   
64.
Unstructured meshes allow easily representing complex geometries and to refine in regions of interest without adding control volumes in unnecessary regions. However, numerical schemes used on unstructured grids have to be properly defined in order to minimise numerical errors. An assessment of a low Mach algorithm for laminar and turbulent flows on unstructured meshes using collocated and staggered formulations is presented. For staggered formulations using cell‐centred velocity reconstructions, the standard first‐order method is shown to be inaccurate in low Mach flows on unstructured grids. A recently proposed least squares procedure for incompressible flows is extended to the low Mach regime and shown to significantly improve the behaviour of the algorithm. Regarding collocated discretisations, the odd–even pressure decoupling is handled through a kinetic energy conserving flux interpolation scheme. This approach is shown to efficiently handle variable‐density flows. Besides, different face interpolations schemes for unstructured meshes are analysed. A kinetic energy‐preserving scheme is applied to the momentum equations, namely, the symmetry‐preserving scheme. Furthermore, a new approach to define the far‐neighbouring nodes of the quadratic upstream interpolation for convective kinematics scheme is presented and analysed. The method is suitable for both structured and unstructured grids, either uniform or not. The proposed algorithm and the spatial schemes are assessed against a function reconstruction, a differentially heated cavity and a turbulent self‐igniting diffusion flame. It is shown that the proposed algorithm accurately represents unsteady variable‐density flows. Furthermore, the quadratic upstream interpolation for convective kinematics scheme shows close to second‐order behaviour on unstructured meshes, and the symmetry‐preserving is reliably used in all computations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
65.
We propose a nonlinear finite volume scheme for convection–diffusion equation on polygonal meshes and prove that the discrete solution of the scheme satisfies the discrete extremum principle. The approximation of diffusive flux is based on an adaptive approach of choosing stencil in the construction of discrete normal flux, and the approximation of convection flux is based on the second‐order upwind method with proper slope limiter. Our scheme is locally conservative and has only cell‐centered unknowns. Numerical results show that our scheme can preserve discrete extremum principle and has almost second‐order accuracy. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
66.
有限元计算中疏密网格过渡方法研究   总被引:1,自引:0,他引:1  
钟红  林皋  胡志强 《计算力学学报》2007,24(6):887-891898
工程计算中出于节省计算量的目的,往往需要在一个有限元模型中布置粗细不同的网格。为保证计算结果的准确性,必须保证网格突变情况下的位移协调问题。本文工作之一是在强天驰界面过渡单元的基础上,引入虚拟节点和子单元,在子单元中应用节理元思想,提出了基于最小势能原理的弹簧节理单元法。简化了积分运算,避免了精度要求极高的坐标转换,从而提高了方法的精度和实用性;二是提出了基于位移约束的主从自由度法,简便实用,只需简单的矩阵运算即可实现。两种方法均实现了不同尺寸网格间位移的协调性和刚度的匹配,从而使之满足有限元收敛准则,且生成的刚度阵具有对称性及带状性。算例证明两种方法精度良好,并可方便地应用于求解大规模工程问题。  相似文献   
67.
不可压N-S方程高效算法及二维槽道湍流分析   总被引:5,自引:1,他引:5  
构造了基于非等距网格的迎风紧致格式,并将其与三阶精度的Adams半隐方法相结合,构造了求解不可压N-S方程高效算法。该算法利用基于交错网格的离散形式的压力Poisson方程求解压力项,解决了边界处的残余散度问题;同时还利用快速Fourier变换将方程的隐式部分解耦,离散后的代数方程组利用追赶法求解,大大减少了计算量。通过对二维槽道流动的数值模拟,证实了所构造的数值方法具有精度高,稳定性好,能抑制混淆误差等优点,同时具有很高的计算效率,是进行壁湍流直接数值模拟的有效方法。在数值模拟的基础上对二维槽道流动进行了分析,得到了Reynolds数从6000到15000的二维流动饱和态解(所谓“二维槽道湍流”);定性及定量结果均与他人的数值计算结果吻合十分理想。对流场进行了分析,指出了“二维湍流”与三维湍流统计特性的区别。  相似文献   
68.
The study of cylindrically symmetric compressible fluid is interesting from both theoretical and numerical points of view. In this paper, the typical spherical symmetry properties of the numerical schemes are discussed, and an area weighted scheme is extended from a Lagrangian method to an arbitrary Lagrangian and Eulerian (ALE) method. Numerical results are presented to compare three discrete configurations, i.e., the control volume scheme, the area weighted scheme, and the plane scheme with the addition of a geometrical source. The fact that the singularity arises from the geometrical source term in the plane scheme is illustrated. A suggestion for choosing the discrete formulation is given when the strong shock wave problems are simulated.  相似文献   
69.
This paper focuses on the assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. The Taylor–Green vortex at Re = 1600 is considered. The results are compared with those obtained using a pseudo‐spectral solver, converged on a 5123 grid and taken as the reference. The temporal evolution of the dissipation rate, visualisations of the vortical structures and the kinetic energy spectrum at the instant of maximal dissipation are compared to assess the results. At an effective resolution of 2883, the fourth‐order accurate discontinuous Galerkin method (DGM) solution (p = 3) is already very close to the pseudo‐spectral reference; the error on the dissipation rate is then essentially less than a percent, and the vorticity contours at times around the dissipation peak overlap everywhere. At a resolution of 3843, the solutions are indistinguishable. Then, an order convergence study is performed on the slightly under‐resolved grid (resolution of 1923). From the fourth order, the decrease of the error is no longer significant when going to a higher order. The fourth‐order DGM is also compared with an energy conserving fourth‐order finite difference method (FD4). The results show that, for the same number of DOF and the same order of accuracy, the errors of the DGM computation are significantly smaller. In particular, it takes 7683 DOF to converge the FD4 solution. Finally, the method is also successfully applied on unstructured high quality meshes. It is found that the dissipation rate captured is not significantly impacted by the element type. However, the element type impacts the energy spectrum in the large wavenumber range and thus the small vortical structures. In particular, at the same resolution, the results obtained using a tetrahedral mesh are much noisier than those obtained using a hexahedral mesh. Those obtained using a prismatic mesh are already much better, yet still slightly noisier. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
70.
An unstructured grid, finite volume method is presented for the solution of two-dimensional viscous, incompressible flow. The method is based on the pressure-correction concept implemented on a semi-staggered grid. The computational procedure can handle cells of arbitrary shape, although solutions presented herein have been obtained only with meshes of triangular and quadrilateral cells. The discretization of the momentum equations is effected on dual cells surrounding the vertices of primary cells, while the pressure-correction equation applies to the primary-cell centroids and represents the conservation of mass across the primary cells. A special interpolation scheme s used to suppress pressure and velocity oscillations in cases where the semi-staggered arrangement does not ensure a sufficiently strong coupling between pressure and velocity to avoid such oscillations. Computational results presented for several viscous flows are shown to be in good agreement with analytical and experimental data reported in the open literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号