首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   86篇
  国内免费   21篇
化学   53篇
晶体学   4篇
力学   112篇
综合类   2篇
数学   15篇
物理学   162篇
  2025年   4篇
  2024年   15篇
  2023年   9篇
  2022年   7篇
  2021年   10篇
  2020年   12篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   21篇
  2015年   7篇
  2014年   14篇
  2013年   29篇
  2012年   15篇
  2011年   19篇
  2010年   9篇
  2009年   15篇
  2008年   12篇
  2007年   16篇
  2006年   15篇
  2005年   18篇
  2004年   13篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1999年   5篇
  1998年   4篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   3篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1979年   2篇
排序方式: 共有348条查询结果,搜索用时 15 毫秒
111.
    
First results are presented for a uniaxial tensile stage designed to operate on a scanning micro X‐ray diffraction synchrotron beamline. The new tensile stage allows experiments at typical loading cycles used in standard engineering stress–strain tests. Several key features have been implemented to support in situ loading experiments at the intragranular length scale. The physical size and weight of the load cell were minimized to maintain the correct working distance for the X‐ray focusing optics and to avoid overloading the high‐resolution raster scan translation stages. A high‐magnification optical microscope and image correlation code were implemented to enable automated online tracking capabilities during macroscopic elongation of the sample. Preliminary in situ tensile loading experiments conducted on beamline 12.3.2 at the Advanced Light Source using a polycrystalline commercial‐purity Ti test piece showed that the elastic–plastic response of individual grains could be measured with submicrometre spatial resolution. The experiments highlight the unique instrumentation capabilities of the tensile stage for direct measurement of deviatoric strain and observation of dislocation patterning on an intragranular length scale as a function of applied load.  相似文献   
112.
    
Conoscopic interference of polarized light for the white‐light and LPS‐7,5Volts direct current semiconductor laser (Green light) with wavelength at 532 nm in (Ca0.28Ba0.72)x(Sr0.60Ba0.40)1‐xNb2O6 crystals were observed with the beams transmitting along optical‐axes and deflection optical‐axes from 0 to 140°. Endo‐exo variation from looseness to tightness of conoscopic interference patterns were analyzed in theory. A hyperbolic black cross of interference patterns were observed as well as its formation process was proposed in this paper. Also, the inferences of the birefringence with different Ca2+‐doped were obtained in this investigation. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
113.
    
The linearity domain for the viscoelastic properties of high-molecular organic fibers is determined. The linearity criteria are coincidence of experimental compliance curves and linearity of isochronic creep curves. Statistical criteria are used to establish linearity. The influence function in the constitutive equation of linear viscoelasticity is an Abel-type power kernel. The calculated and experimental creep strains are in good agreement both at the initial stage of deformation and after long-term loading__________Translated from Prikladnaya Mekhanika, Vol. 41, No. 5, pp. 97–106, May 2005.  相似文献   
114.
    
In this contribution a viscoelastic elastomer is examined with respect to its thermo‐mechanical behaviour. Therefore uniaxial tension tests and relaxation tests are performed at different constant temperatures up to the glass transition region. Hence an experimental data pool is provided. On the theoretical side a finite viscoelastic and incompressible material model is used and enhanced by temperature dependency in order to model the experimentally observed effects. The material parameters are strategically identified by means of biologic evolution strategies. Thereby it turned out that the investigated material cannot be modelled as a thermo‐rheologically simple material. Quite the contrary, a new ansatz is chosen.  相似文献   
115.
    
The lyotropic mixture of potassium laurate/decanol/water presenting only the uniaxial nematic calamitic phase was doped with one strong (potassium chloride, KCl) and 11 weak electrolytes with phenyl-rings (DL-mandelic acid, benzoic acid, DL-phenyllactic acid, phenylacetic acid, phenol and phenylmethanol) and with cyclohexyl-ring (RS-hexahydromandelic acid, cyclohexanecarboxylic acid, cyclohexaneacetic acid, cyclohexanol and cyclohexylmethanol), separately. We also chose two nonpolar dopant molecules, benzene and cyclohexane, for the comparison of them with weak electrolytes, since they are located in the hydrocarbon core of the micelle. The nematic phase sequences, in particular the presence of the biaxial nematic phase, were investigated as a function of the dopant molar concentration and temperature. The laser conoscopy and small-angle X-ray scattering techniques were used to characterise the different nematic phases. Weak electrolytes having –COOH group as polar part were found to be very effective in stabilising the three nematic phases (two uniaxial and a biaxial). Guest molecules with only the –OH group did not show any effect on the stabilisation of other nematic phases. The experimental results are interpreted considering the screening effect of the hydrophilic parts of the dopants on the repulsion between the polar heads of the main amphiphilic molecules at micelle surfaces. This process favours the increase of the more flat micellar surfaces of micelles, which triggers the orientational fluctuations responsible for the biaxial and discotic nematic phases.  相似文献   
116.
    
A microstructure‐based model of rubber reinforcement is presented describing filler‐induced stress softening and hysteresis by the breakdown and re‐aggregation of strained filler clusters. An extension of the previously introduced dynamic flocculation model, it considers incomplete deformation cycles that occur in the simulation of arbitrary deformation histories. For these inner cycles additional elastic stress contributions of clusters are taken into account. A constitutive generalization of the model is introduced by referring to the engineering concept of representative directions. This allows for an implementation of the model into FE codes. Fair agreement between measurement and simulation is obtained for CB‐filled EPDM, loaded along various deformation histories.

  相似文献   

117.
118.
    
The deformation and fracture behavior under uniaxial tension were characterized for high‐energy irradiated poly(vinylidene fluoride‐trifluorethylene) (P(VDF‐TrFE)) 68/32 mol % copolymer films. The results show that the stress–strain behavior of the irradiated copolymer films exhibits ductile polymeric behavior, with its fracture strain being more than five times of that of the nonirradiated ones but of much lower maximum strength. X‐ray diffraction (XRD) analysis and scanning electron microscope (SEM) observation are carried out to examine the microstructure and morphology changes caused by the uniaxial tension. It is demonstrated that the tensile mechanical field reintroduces the polar β‐phase that was previously lost through irradiation. It is suggested that the conformational change from the nonpolar phase to the polar β‐phase during the uniaxial tension, as well as the low crystallinity and loosely packed molecular chain structure, mainly contribute to the observed stress–strain behavior for the irradiated copolymer films. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2563–2567, 2007  相似文献   
119.
    
The variations in the molecular orientation of uniaxially drawn rigid‐rod polyimide films were systematically characterized in all three dimensions with polarized attenuated total reflection/Fourier transform infrared spectroscopy. The second‐order orientation coefficients were directly deduced from the anisotropy in IR absorptions of particular bands. With the draw ratio increasing, the state of the molecular orientation changed from being nearly planar to completely uniaxial via biaxial orientation, and the degree of orientation was much larger than that of a semirigid polyimide having an ether linkage at the same draw ratio, which originated from the rigid‐rod structure. In addition, the imide planes were rotationally oriented to the out‐of‐plane direction of the film geometry. Furthermore, the relationship between the molecular chain orientation and the in‐plane birefringence in the biaxial orientation state was examined. The intrinsic birefringence was estimated from biaxial orientation films to be 0.33 at a wavelength of 1307 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 418–428, 2003  相似文献   
120.
    
The structural evolution during uniaxial stretching of poly(vinyl chloride) films was studied using our real time spectral birefringence stretching machine. The effect of clay loading and the amount of plasticizer as well as the rate effects on the birefringence development and true mechanical response are presented with a final model summarizing the molecular phenomena during stretching. Mechano‐optical studies revealed that birefringence correlated with mechanical response (stress, strain, work) nonlinearly. This was primarily attributed to the preexisting strong network of largely amorphous chains connected via small crystallites that act as physical crosslinking points. These crystallites are not easily destroyed during the high‐speed stretching process as evidenced from the birefringence–true strain curves along with the X‐ray crystallinity measurements. At high speeds, the amorphous chains do not have enough time to relax and hence attain higher orientation levels. The crystallites, however, orient more efficiently when stretched at slow speeds. Apparently, some relaxation of the surrounding amorphous chains helps rotate the crystallites in the stretching direction. Overall birefringence is higher at high stretching speeds for a given true strain value. When the nanoparticles are incorporated, the orientation levels are increased significantly for both the crystalline and amorphous phases. Nanoplatelets increase the continuity of the network because they have strong interaction with the amorphous chains and/or crystallites. This in turn helps transfer the local stresses to the attached chains and increase the orientation levels of the chains. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 724–742, 2005  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号