Indium tin oxide (ITO) thin films were deposited by mid frequency pulsed dual magnetron sputtering using a metallic alloy target with 10 wt.% tin in an atmosphere of argon and oxygen. The aim of the work was to study the interdependence of structural, electrical and optical properties of ITO films deposited in the reactive and transition target mode, respectively. The deposition rate in the transition mode exceeds the deposition rate in the reactive mode by a factor of six, a maximum value of 100 nm·m min−1 could be achieved. This corresponds to a static deposition rate of 200 nm min−1. The lowest electrical resistivity of 1.1·10−3 Ω cm was measured at samples deposited in the high oxygen flow range in the transition mode. The samples show a good transparency in the visible range corresponding to extinction coefficients being below 10−2. X-ray diffraction was used to characterise crystalline structure as well as film stress. ITO films prepared in the transition mode show a slightly preferred orientation in (211) direction, whereas films deposited in the reactive mode are strongly (222) oriented. Compared to undoped In2O3 all samples have an enlarged lattice. The lattice strain perpendicular to the surface is about 0.8% and 2.0% for films grown in the transition and the reactive mode, respectively. Deposition in the transition mode introduces a biaxial film stress in the range of −300 MPa, while stress in reactive mode samples is −1500 MPa. 相似文献
Summary : The present paper is concerned with the modelling and the simulation of hygrothermal deformation of composite laminates. The temperature and moisture fields are established by employing the Fick's law for transient and cyclical environmental conditions, then the Classical Plate Theory (CLT) adapted for taking into account such conditions is applied. The hygrothermoelastic law of the composite is supposed to be constant but the diffusion coefficients depend on the temperature. The paper shows the ability of the model to handle complex environmental loading, close to service conditions. Finally, a model of plate with moderate rotations is introduced to predict the nonlinear deformations of unsymmetric plates under temperature and moisture cycling conditions. 相似文献
It is known, that the lifetime of polyethylene pipes is essentially limited by slow crack growth (SCG). For state of the art PE materials common SCG testing methods have reached their limits with respect to extension of testing times. A comparatively new method is the Notched Ring Test (NRT) as developed by Choi et al.[1] Pipe rings notched at the inner wall are used. The test is carried out in 80 °C water under constant bending load. The arrangement of the notch at the inner wall reduces testing times using the residual stress of extruded pipes. A disadvantage of this method is that there is no clearly defined failure time because SCG takes place between two phases of creeping. The output of this test is an “on-set slow cracking time” (crack initiation), obtained by analysis of the displacement curve. In this work it has been shown that the NRT method yields to brittle fracture within acceptable time frames.[2] Methods for data analysis are presented. This test could be very useful applied in research and development for resin evaluation and as a tool in quality control in pipe production for evaluating the process conditions. 相似文献
Summary: A mechanical model was developed to describe qualitatively and quantitatively the stress‐strain‐time behavior of a prepared shape memory crosslinked polyethylene during hot stretching, stress relaxation under 200% strain at high temperature and strain recovery of the heat shrinkable polymer. The stress‐strain, the stress relaxation and the irrecoverable strain behavior of the model were established by driving the constitutive equation, which could qualitatively represent the behavior of the real material. By choosing significant values for the parameters of the proposed model, an excellent fit was obtained between the experimental behavior of the polymer and that predicted by the model. It was also revealed that the main source responsible for the imperfect recovery of the induced strain observed was the stress relaxation occurring during the stretch holding‐cooling time step.
Stress relaxation of crosslinked polyethylene under 200% strain at 160 °C. 相似文献
A simple and sensitive procedure based on headspace solid‐phase microextraction and gas chromatography with mass spectrometry was developed for the determination of five terpenes (α‐pinene, limonene, linalool, α‐terpineol, and geraniol) in the leaves of Nicotiana langsdorffii. The microextraction conditions (extraction temperature, equilibration time, and extraction time) were optimized by means of a Doehlert design. The experimental design showed that, for α‐pinene and limonene, a low temperature and a long extraction time were needed for optimal extraction, while linalool, α‐terpineol, and geraniol required a high temperature and a long extraction time. The chosen compromise conditions were temperature 60°C, equilibration time 15 min and extraction time 50 min. The main analytical figures of the optimized method were evaluated; LODs ranged from 0.07 ng/g (α‐pinene) to 8.0 ng/g (geraniol), while intraday and interday repeatability were in the range 10–17% and 9–13%, respectively. Finally, the procedure was applied to in vitro wild‐type and transgenic specimens of N. langsdorffii subjected to abiotic stresses (chemical and heat stress). With the exception of geraniol (75–374 ng/g), low concentration levels of terpenes were measured (ng/g level or lower); some interesting variations in terpene concentration induced by abiotic stress were observed. 相似文献