首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15542篇
  免费   1585篇
  国内免费   1460篇
化学   11660篇
晶体学   82篇
力学   1068篇
综合类   223篇
数学   3017篇
物理学   2537篇
  2024年   42篇
  2023年   155篇
  2022年   488篇
  2021年   492篇
  2020年   602篇
  2019年   543篇
  2018年   496篇
  2017年   585篇
  2016年   771篇
  2015年   649篇
  2014年   822篇
  2013年   1599篇
  2012年   972篇
  2011年   914篇
  2010年   744篇
  2009年   821篇
  2008年   837篇
  2007年   960篇
  2006年   747篇
  2005年   707篇
  2004年   576篇
  2003年   518篇
  2002年   477篇
  2001年   400篇
  2000年   360篇
  1999年   325篇
  1998年   270篇
  1997年   241篇
  1996年   215篇
  1995年   199篇
  1994年   137篇
  1993年   167篇
  1992年   153篇
  1991年   106篇
  1990年   66篇
  1989年   56篇
  1988年   54篇
  1987年   45篇
  1986年   41篇
  1985年   42篇
  1984年   30篇
  1983年   15篇
  1982年   30篇
  1981年   16篇
  1980年   17篇
  1979年   20篇
  1978年   14篇
  1976年   9篇
  1973年   16篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Faced with the contradictory results of two recent experimental studies [Jara‐Toro et al., Angew. Chem. Int. Ed. 2017 , 56, 2166 and Chao et al., Angew. Chem. Int. Ed. 2019 , 58, 5013] of the possible catalytic effect of water vapor on CH3OH + OH reaction, we report calculations that corroborate the conclusion made by Chao et al. and extend the rate constant evaluation down to 200 K. The rate constants of the CH3OH + OH reaction catalyzed by a water molecule are computed as functions of temperature and relative humidity using high‐level electronic structure and kinetics calculations. The Wuhan–Minnesota Scaling (WMS) method is used to provide accurate energetics to benchmark a density functional for direct dynamics. Both high‐frequency and low‐frequency anharmonicities are included. Variational and tunneling effects are treated by canonical variational transition state theory with multidimensional small‐curvature tunneling. And, most significantly, we include multistructural effects in the rate constant calculations. Our calculations show that the catalytic effect of water vapor is not observable at 200–400 K.  相似文献   
992.
The oxidation of antioxidants by oxidizers imposes great challenges to both living organisms and the food industry. Here we show that the host–guest complexation of the carefully designed, positively charged, amphiphilic guanidinocalix[5]arene pentadodecyl ether (GC5A‐12C) and negatively charged oleic acid (OA), a well‐known cell membrane antioxidant, prevents the oxidation of the complex monolayers at the air–water interface from two potent oxidizers hydroxyl radicals (OH) and singlet delta oxygen (SDO). OH is generated from the gas phase and attacks from the top of the monolayer, while SDO is generated inside the monolayer and attacks amphiphiles from a lateral direction. Field‐induced droplet ionization mass spectrometry results have demonstrated that the host–guest complexation achieves steric shielding and prevents both types of oxidation as a result of the tight and “sleeved in” physical arrangement, rather than the chemical reactivity, of the complexes.  相似文献   
993.
A facile photoetching approach is described that alleviates the negative effects from bulk defects by confining the oxygen vacancy (Ovac) at the surface of BiVO4 photoanode, by 10‐minute photoetching. This strategy could induce enriched Ovac at the surface of BiVO4, which avoids the formation of excessive bulk defects. A mechanism is proposed to explain the enhanced charge separation at the BiVO4 /electrolyte interface, which is supported by density functional theory (DFT) calculations. The optimized BiVO4 with enriched surface Ovac presents the highest photocurrent among undoped BiVO4 photoanodes. Upon loading FeOOH/NiOOH cocatalysts, photoetched BiVO4 photoanode reaches a considerable water oxidation photocurrent of 3.0 mA cm?2 at 0.6 V vs. reversible hydrogen electrode. An unbiased solar‐to‐hydrogen conversion efficiency of 3.5 % is realized by this BiVO4 photoanode and a Si photocathode under 1 sun illumination.  相似文献   
994.
Chitosan (CS) with good hydrophilicity and charged property was used to modify graphene oxide (GO), the obtained GO‐CS was used as a novel modifier to fabricate thin film composite forward osmosis (FO) membranes. The results revealed that the amino groups on CS reacted with carboxyl groups on GO, and the lamellar structure of the GO nanosheets was peeled off by CS, resulting in the reducing of their thicknesses. The GO‐CS improved the hydrophilicity of polyethersulfone (PES) substrate, and their contact angles decreased to 64° with the addition of GO‐CS in the substrate. GO‐CS also increased the porosity of the substrate and surface roughness of FO membrane, thereby optimizing the water flux and reverse salt flux of FO membrane. The average water flux of the FO membrane reached the optimal flux of 21.34 L/(m2 h) when GO‐CS addition was 0.5 wt%, and further addition of GO‐CS to the substrate would decrease the water flux of FO membrane, and the reverse salt flux also decreased to the lowest value of 2.26 g/(m2 h). However, the salt rejection of the membrane increased from 91.4% to 95.1% when GO‐CS addition increased from 0.5 to 1.0 wt% under FO mode using 1 mol/L sodium chloride (NaCl) solution as draw solution (DS). In addition, high osmotic pressure favored water permeation, and at the same concentration of DS, magnesium chloride (MgCl2) exhibited better properties than NaCl. These results all suggested that GO‐CS was a good modifier to fabricate FO membrane, and MgCl2 was a good DS candidate.  相似文献   
995.
Abstract

We have developed original one-pot and protecting group-free approaches, which are also user-friendly and reliable, to synthesize nucleotides and derivatives starting from nucleoside 5’-monophosphates. Both methods present convenient set-up, i.e., non-dry solvents and reagents, substrates in their sodium or acid form, and commercially available and cheap phosphorus reagents as sodium and potassium salts.  相似文献   
996.
A novel fluorinated chain extender, (1‐(ethyl(2‐hydroxyethyl)amino)‐3‐ ((3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl)oxy)propan‐2‐ol) (FPO), was synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. Poly (ether urethane)s containing various amounts of the chain extender with fluorinated side chains (FPUs) were prepared by isophorone diisocyanate (IPDI), polytetra‐methylene‐ether‐glycol (PTMG), 3‐aminopropyltriethoxysilane (KH‐550), and 1,4‐butandiol (BDO). Films of FPUs were investigated by water absorption, contact angle, pencil hardness, adhesive force, and thermal analysis. Coating FPUs on micro‐nano concave‐convex structure plate realizes superhydrophobic performance. Scanning electron microscope (SEM) and atomic force microscopy (AFM) demonstrated that there is a lot of irregular concave‐convex structure, which forms a typical air cushion model. X‐ray photoelectron spectroscopy (XPS) analysis showed that surface fluorine content is 165% more than that of film average fluorine content. The superhydrophobic plate with 10% or higher F‐containing FPUs coating is of outstanding chemical corrosion resistance, excellent solvent resistance, and wear resistance.  相似文献   
997.
In the presented study, the sulfur dioxide sorption properties of fly ash zeolite X were investigated. Sorption tests were performed on fly ash zeolite samples that were not prepared specially for sorption, in addition to dried samples and samples in the presence of water vapor. The samples saturated with water vapor showed the highest sorption capacity. The sorption capacity of the samples additionally dried prior to the sorption experiment was higher than that of the samples that were not specially prepared for the sorption test. Regeneration tests indicated relatively good regeneration properties. The obtained results were described with the use of Langmuir, Sips, and Dubinin–Astakhov models, with the Dubinin–Astakhov model providing the best fit.  相似文献   
998.
This work reports on dyeing of nylon/elastane fabric with water-soluble phthalocyanines ( 1-4 ) bearing quinoline 5-sulfonic acid substituents on the peripheral or nonperipheral positions and determining the antibacterial efficiency of the phthalocyanine compounds and the dyed nylon/elastane fabrics. The light, washing, water, perspiration, and rubbing fastness properties of nylon/elastane fabrics dyed with phthalocyanines were also determined. The results showed that all dyed fabrics showed very good wet fastness values. The lightfastness value of the nylon/elastane fabric dyed with phthalocyanine dye ( 1 ) showed a much better value than the others. Also, the antibacterial efficiencies of the dyed nylon fabrics and the dye compounds were investigated against a gram-negative ( Escherichia coli ) and a grampositive ( Staphylococcus aureus ) bacteria by using disc diffusion method. The results showed that the dyed nylon/elastane fabrics and the compounds exhibited antibacterial activities against both bacteria.  相似文献   
999.
Transition‐metal borides (TMBs) have recently attracted attention as excellent hydrogen evolution (HER) electrocatalysts in bulk crystalline materials. Herein, we show for the first time that VB and V3B4 have high electrocatalytic HER activity. Furthermore, we show that the HER activity (in 0.5 m H2SO4) increases with increasing boron chain condensation in vanadium borides: Using a ?23 mV overpotential decrement derived from ?0.296 mV (for VB at ?10 mA cm?2 current density) and ?0.273 mV (for V3B4) we accurately predict the overpotential of VB2 (?0.204 mV) as well as that of unstudied V2B3 (?0.250 mV) and hypothetical “V5B8” (?0.227 mV). We then derived an exponential equation that predicts the overpotentials of known and hypothetical VxBy phases containing at least a boron chain. These results provide a direct correlation between crystal structure and HER activity, thus paving the way for the design of even better electrocatalytic materials through structure–activity relationships.  相似文献   
1000.
Metal–organic frameworks (MOFs) with long‐term stability and reversible high water uptake properties can be ideal candidates for water harvesting and indoor humidity control. Now, a mesoporous and highly stable MOF, BIT‐66 is presented that has indoor humidity control capability and a photocatalytic bacteriostatic effect. BIT‐66 (V3(O)3(H2O)(BTB)2), possesses prominent moisture tunability in the range of 45–60 % RH and a water uptake and working capacity of 71 and 55 wt %, respectively, showing good recyclability and excellent performance in water adsorption–desorption cycles. Importantly, this MOF demonstrates a unique photocatalytic bacteriostatic behavior under visible light, which can effectively ameliorate the bacteria and/or mold breeding problem in water adsorbing materials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号