首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3083篇
  免费   424篇
  国内免费   190篇
化学   2284篇
晶体学   25篇
力学   394篇
综合类   63篇
数学   382篇
物理学   549篇
  2024年   20篇
  2023年   65篇
  2022年   154篇
  2021年   179篇
  2020年   245篇
  2019年   166篇
  2018年   135篇
  2017年   147篇
  2016年   195篇
  2015年   159篇
  2014年   183篇
  2013年   223篇
  2012年   157篇
  2011年   162篇
  2010年   131篇
  2009年   132篇
  2008年   143篇
  2007年   173篇
  2006年   142篇
  2005年   131篇
  2004年   124篇
  2003年   89篇
  2002年   57篇
  2001年   46篇
  2000年   42篇
  1999年   40篇
  1998年   47篇
  1997年   29篇
  1996年   35篇
  1995年   29篇
  1994年   11篇
  1993年   13篇
  1992年   12篇
  1991年   2篇
  1990年   5篇
  1989年   2篇
  1988年   9篇
  1986年   25篇
  1985年   6篇
  1984年   11篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   7篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1971年   2篇
  1969年   1篇
排序方式: 共有3697条查询结果,搜索用时 15 毫秒
101.
Most recent advances in the synthesis of supramolecular hydrogels based on low molecular weight gelators (LMWGs) have focused on the development of novel hybrid hydrogels, combining LMWGs and different additives. The dynamic nature of the noncovalent interactions of supramolecular hydrogels, together with the specific properties of the additives included in the formulation, allow these novel hybrid hydrogels to present interesting features, such as stimuli-responsiveness, gel-sol reversibility, self-healing and thixotropy, which make them very appealing for multiple biomedical and biotechnological applications. In particular, the inclusion of magnetic nanoparticles in the hydrogel matrix results in magnetic hydrogels, a particular type of stimuli-responsive materials that respond to applied magnetic fields. This review focuses on the recent advances in the development of magnetic supramolecular hydrogels, with special emphasis in the role of the magnetic nanoparticles in the self-assembly process, as well as in the exciting applications of these materials.  相似文献   
102.
103.
Membrane technology is of particular significance for the sustainable development of society owing to its potential capacity to tackle the energy shortage and environmental pollution. Membrane materials are the core part of membrane technology. Researchers have always been pursuing predictable structures of advanced membrane materials, which provides a possibility to fully unlock the potential of membranes. Covalent organic frameworks(COFs), with the advantage of controllable pore microenvironment, are considered to be promising candidates to achieve this design concept. The customizable function of COF membranes through pore engineering does well in the enhancement of selective permeability performance, which offers COF membranes with great application potentials in separation and transportation fields. In this context, COF-based membranes have been developed rapidly in recent years. Herein, we present a brief overview on the strategies developed for pore engineering of COF membranes in recent years, including skeleton engineering, pore surface engineering, host-guest chemistry and membrane fabrication. Moreover, the features of transmission or separation of molecules/ions based on COF membranes and corresponding applications are also introduced. In the last part, the challenges and prospects of the development of COF membranes are discussed.  相似文献   
104.
Low-efficiency charge separation in metal sulfides is a major obstacle to realizing high photocatalytic performance. Herein, we propose the concept of a similar surface domain potential difference between adjacent microdomains with and without surface S vacancies on ZnIn2S4 to mediate charge separation. Defective ZnIn2S4 microspheres (DZISNPs) are prepared through a solvothermal method combined with a low-temperature hydrogenation surface engineering strategy. The as-prepared DZISNPs with a narrowed bandgap of 2.38 eV possess a large specific surface area of 178.5 m2 g?1, a pore size of 6.89 nm, and a pore volume of 0.36 cm3 g?1, which further improves the visible light absorption. The resultant DZISNPs exhibit excellent visible light activity (2.15 mmol h?1 g?1), which is ~two-fold higher than that of the original DZISNP. The experimental results and DFT calculations reveal that the enhanced property can be a result of the surface S vacancy-induced surface domain potential difference, promoting the spatial separation of electrons and holes. Furthermore, the long-term stability of the DZISNPs indicates that the formation of surface S vacancies can inhibit the photocorrosion of ZnIn2S4. This strategy provides new insights for fabricating highly efficient and stable sulfide photocatalysts.  相似文献   
105.
The most challenging task of creating a bioengineered ovary to restore fertility in cancer patients is choosing an appropriate biomaterial to encapsulate isolated preantral follicles and ovarian cells. In this study, as a biocompatible and biodegradable biomaterial containing fibrin-like bioactivity and manageable physical properties, PEGylated fibrin aims to encapsulate isolated ovarian stromal cells as a first step of creating an engineered ovarian tissue. For this purpose, human ovarian stromal cells were isolated from frozen-thawed ovarian tissue and cultured in the PEGylated fibrin hydrogels (PEG:Fib), which were fabricated by combining two different molar ratios of PEG:Fib (10:1 and 5:1) and two thrombin concentrations. The samples were analyzed at days 0 and 5 of in vitro for cell density, proliferation (Ki67), and apoptosis (caspase-3). Moreover, LIVE/DEAD and PrestoBlue assays assessed cell viability and proliferation on days 1, 3, and 5. The effect of PEGylation on the biodegradation behavior of fibrin was evaluated by measuring the remaining mass ratio of non-modified fibrin, PEG:Fib 10:1, and PEG:Fib 5:1 hydrogels after 1, 2, 3, 5, 8, 11, and 15 days. The results showed that PEGylated fibrin hydrogels enhanced scaffold stability and supported cell viability and proliferation. In addition, PEG:Fib 5:1 T50 indicated a significantly higher cell density dynamic and non-significantly lower expression of caspase-3 on day 5. Besides, uniformity of cell distribution inside the hydrogel and a tendency to a high rate of Ki67-positive cells was observed in PEG:Fib 10:1 T50 hydrogels. In conclusion, this study reveals the positive effects of PEGylated fibrin hydrogels on isolated human ovarian stromal cells. Based on such promising findings, we believe that this matrix should be tested to encapsulate isolated human ovarian follicles.  相似文献   
106.
Solid electrolytes, such as perovskite Li3xLa2/1−xTiO3, LixLa(1−x)/3NbO3 and garnet Li7La3Zr2O12 ceramic oxides, have attracted extensive attention in lithium-ion battery research due to their good chemical stability and the improvability of their ionic conductivity with great potential in solid electrolyte battery applications. These solid oxides eliminate safety issues and cycling instability, which are common challenges in the current commercial lithium-ion batteries based on organic liquid electrolytes. However, in practical applications, structural disorders such as point defects and grain boundaries play a dominating role in the ionic transport of these solid electrolytes, where defect engineering to tailor or improve the ionic conductive property is still seldom reported. Here, we demonstrate a defect engineering approach to alter the ionic conductive channels in LixLa(1−x)/3NbO3 (x = 0.1~0.13) electrolytes based on the rearrangements of La sites through a quenching process. The changes in the occupancy and interstitial defects of La ions lead to anisotropic modulation of ionic conductivity with the increase in quenching temperatures. Our trial in this work on the defect engineering of quenched electrolytes will offer opportunities to optimize ionic conductivity and benefit the solid electrolyte battery applications.  相似文献   
107.
Tubular-shaped layer electrodeposition from chitosan-hydroxyapatite colloidal solutions has found application in the field of regeneration or replacement of cylindrical tissues and organs, especially peripheral nerve tissue regeneration. Nevertheless, the quantitative and qualitative characterisation of this phenomenon has not been described. In this work, the colloidal systems are subjected to the action of an electric current initiated at different voltages. Parameters of the electrodeposition process (i.e., total charge exchanged, gas volume, and deposit thickness) are monitored over time. Deposit structures are investigated by scanning electron microscopy (SEM) and Fourier-transform infrared spectroscopy (FTIR). The value of voltage influences structural characteristics but not thickness of deposit for the process lasting at least 20 min. The calculated number of exchanged electrons for studied conditions suggests that the mechanism of deposit formation is governed not only by water electrolysis but also interactions between formed hydroxide ions and calcium ions coordinated by chitosan chains.  相似文献   
108.
Room temperature ionic liquids (RTILs) have been widely used as (co)solvents in several catalytic processes modifying, in most of the cases, the catalyst activity and/or the selectivity for the studied reactions. However, there are just a few examples of their use in hydrogen bonding organocatalysis. In this paper, we show the positive effect of a set of imidazole-based ionic liquids ([bmim]BF4 and [hmim]PF6) in the enantioselective addition of formaldehyde tert-butylhydrazone to prochiral α-keto esters catalyzed by a sugar-based chiral thiourea. Reactions performed in the presence of low percentages of RTILs led to an increase of the catalyst activity, thereby making possible to work at lower temperatures. Thus, the chiral tert-butyl azomethyl tertiary alcohols could be obtained with moderate to good conversions and higher enantioselectivities for most of the studied substrates when using up to 30 vol% of [hmim]PF6 as a cosolvent in processes performed in toluene.  相似文献   
109.
基于工程教育认证的核心理念,制定了面向产出的高分子化学课程教学大纲。与传统课程教学大纲不同,本大纲的课程目标是使学生具备推演、阐述、分析和研究高分子材料领域复杂工程问题的能力,体现以学生为中心、面向产出和持续改进的理念。课程教学内容既包含知识点又包含能力要求,强调课程知识点与学生能力达成的支撑关系。在课程考核部分,提出了分目标模块化的考核方法和评分标准,满足了工程认证可衡量、易操作的考核要求。  相似文献   
110.
We propose two schemes for generating a four-atom cluster state in a thermal cavity. With the assistant of a strong classical field the photon-number-dependent parts in the effective Hamiltonian are canceled. Thus the schemes are insensitive to the thermal field. The schemes can also be used to generate the cluster state for the trapped ions in thermal motion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号