首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2081篇
  免费   135篇
  国内免费   296篇
化学   1542篇
晶体学   13篇
力学   443篇
综合类   15篇
数学   175篇
物理学   324篇
  2024年   8篇
  2023年   23篇
  2022年   37篇
  2021年   79篇
  2020年   79篇
  2019年   73篇
  2018年   74篇
  2017年   71篇
  2016年   109篇
  2015年   69篇
  2014年   93篇
  2013年   189篇
  2012年   87篇
  2011年   104篇
  2010年   69篇
  2009年   87篇
  2008年   116篇
  2007年   100篇
  2006年   98篇
  2005年   115篇
  2004年   113篇
  2003年   88篇
  2002年   80篇
  2001年   72篇
  2000年   70篇
  1999年   57篇
  1998年   39篇
  1997年   49篇
  1996年   63篇
  1995年   49篇
  1994年   32篇
  1993年   33篇
  1992年   18篇
  1991年   24篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1974年   1篇
  1973年   1篇
  1957年   2篇
排序方式: 共有2512条查询结果,搜索用时 484 毫秒
101.
Foam, as a non-Newtonian fluid, plays an important role in the underbalanced drilling technique in oil field development. The rheological properties of drilling fluids, such as foam, have a direct effect on flow characteristics and hydraulic performance. Two rheological models—the Herschel–Bulkley model and power law—were fitted to two foam systems in this study. Computational fluid dynamics (CFD) was used to simulate the effect of the rheological models on solid–liquid (cuttings transport) hydraulics in concentric and eccentric annulus during the foam drilling operation. The simulation results are compared to the experimental data from previous studies. The results of CFD using the power law model are in good agreement with experimental results in horizontal annulus with respect to the Herschel–Bulkley model with relative error less than 8%. Thus, for CFD cuttings transport for simulations in inclined and horizontal annulus, it is best to use the power law's rheological model parameters.  相似文献   
102.
A stable chelating resin matrix was prepared by covalently linking resorcinol with polyurethane foam matrix through a –N=N– group. Preconcentration and determination of trace Ag+ and Hg2+ ions from samples of different origin, using Res-PUF, were studied. Various conditions influencing the sorption of these metal ions onto Res-PUF were optimized. The kinetics of sorption of the Ag+ and Hg2+ by Res-PUF were found to be fast, reached equilibrium in few minutes (5–10?min) and followed a first-order rate equation with an overall rate constant k in 0.102 and 0.267/min, respectively. Study of the variation of the sorption of the tested metal ions with temperature yielded average values for ΔG, ΔH and ΔS of ?3.94, ?22.02 and ?58.37, respectively. The mean free sorption energy (E) computed from the Dubinin–Radushkevich (D–R) isotherm was found to be equal to 8.91 kJ/mol, which reflects the chelation sorption process. The capacities of the foam material were 0.15 and 0.07?mmol/g for Ag+ and Hg2+, respectively. Preconcentration factors of?>?50 were achieved (RSD?≈?5.99). The proposed preconcentration procedure was applied successfully to the determination of trace metal ions in natural and wastewater samples.  相似文献   
103.
Dithiocarbamate modified polyurethane foam (DTC-PUF) was synthesized as a new solid-phase extraction sorbent for the preconcentration and determination of Fe(II), Mn(II) and Cu(II) in environmental samples using flame atomic absorption spectrometry. Maximum extraction of the elements was achieved at pH 5–7 and flow rate 3 mL min?1. Quantitative desorption was achieved by 10 mL from 1.0 mol L?1 HCl solution. The capacity of the sorbent was 149.2 ± 0.5, 237.5 ± 0.2, 200.2 ± 0.1 μg g?1 and the limit of detection was of 0.015, 0.015 and 0.012 μg mL?1for Fe(II), Mn(II) and Cu(II), respectively. A preconcentration factor of 100 was obtained for all elements. The developed method was successfully applied to the determination of the tested elements in water (tap and lake) and plant (spinach and parsley leaves) samples and showed good recovery values from 98 to 111% with corresponding RSD values ranged from 0.6 to 8.6%.  相似文献   
104.
The investigation of highly efficient catalysts for the electrochemical oxidation of glucose is the most critical challenge to commercialize nonenzymatic glucose sensors, which display a few attractive superiorities including the sufficient stability of their properties and the desired reproducibility of results over enzyme electrodes. Herein we propose a new and very promising catalyst: Pt cubes well‐dispersed on the porous Cu foam, for the the electrochemical oxidation reaction of glucose in neutral media. The catalyst is fabricated in situ on a homemade screen‐printed carbon electrode (SPCE) substrate through initially synthesizing the three‐dimensional (3D) porous Cu foam using a hydrogen evolution assisted electrodeposition strategy, followed by electrochemically reducing the platinic precursor simply and conveniently. Field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) proofs demonstrate that Pt cubes, with an average size (the distance of opposite faces) of 185.1 nm, highly dispersed on the macro/nanopore integrated Cu foam support can be reproducibly obtained. The results of electrochemical tests indicate that the cubic Pt‐based catalyst exhibits significant enhancement on the catalytic activity towards the electrooxidation of glucose in the presence of chloride ions, providing a specific activity 6.7 times and a mass activity 5.3 times those of commercial Pt/C catalysts at ?0.4 V (vs. Ag/AgCl). In addition, the proposed catalyst shows excellent stability of performance, with only a 2.8 % loss of electrocatalytic activity after 100 repetitive measurements.  相似文献   
105.
Finding the root mean sum of squared deviations (RMSDs) between two coordinate vectors that correspond to the rigid body motion of a macromolecule is an important problem in structural bioinformatics, computational chemistry, and molecular modeling. Standard algorithms compute the RMSD with time proportional to the number of atoms in the molecule. Here, we present RigidRMSD, a new algorithm that determines a set of RMSDs corresponding to a set of rigid body motions of a macromolecule in constant time with respect to the number of atoms in the molecule. Our algorithm is particularly useful for rigid body modeling applications, such as rigid body docking, and also for high‐throughput analysis of rigid body modeling and simulation results. We also introduce a constant‐time rotation RMSD as a similarity measure for rigid molecules. A C++ implementation of our algorithm is available at http://nano‐d.inrialpes.fr/software/RigidRMSD . © 2014 Wiley Periodicals, Inc.  相似文献   
106.
The foam stability (drainage half-life) of α-olefin sulfonate (AOS) with partially hydrolyzed polyacrylamide (HPAM) or xanthan gum (XG) solution was evaluated by the Warring Blender method. With the increase of polymer (HPAM or XG) concentration, foam stability of the surfactant–polymer complexes increased, and the drainage half-life of AOS-XG foam was higher than that of AOS-HPAM foam at the same polymer and surfactant concentration. With the addition of polymer (HPAM or XG), the viscoelasticity of bulk solution and the liquid film were enhanced. The viscoelasticity of AOS-XG bulk solution and liquid film were both higher than that of AOS-HPAM counterparts.   相似文献   
107.
3,6‐Connected cyclohexadienes as precursors for polyphenylenes are synthesized and characterized by mass spectrometry and NMR spectroscopy. Pure fractions of trimers, hexamers, and nonamers are collected after separation of the product mixture by recycling GPC. The anticipated formation of rigid linear structures, due to the trans‐configuration of the monomeric units, is supported by density functional theory and experimentally confirmed by dynamic light scattering from dilute solution at low scattering angles. The obtained translational diffusion coefficients are represented by rigid rod‐like or prolate ellipsoid‐like molecular shapes. The measurements of diffusion coefficients reveal a length‐dependent ratio of 1:2:3 between the three oligomers, which directly correlates to the expected length extension from trimer to nonamer.

  相似文献   

108.
A triol‐functional crosslinker combining the thermoreversible properties of Diels–Alder (DA) adducts in one molecule is designed, synthesized, and used as an ideal substitute of a traditional crosslinker to prepare thermal recyclable cross‐linked polyurethanes with excellent mechanical properties and recyclability in a very simple and efficient way. The recycle property of these materials achieved by the DA/retro‐DA reaction at a suitable temperature is verified by differential scanning calorimetry and in situ variable temperature solid‐state NMR experiments during the cyclic heating and cooling processes. The thermal recyclability and remending ability of the bulk polyurethanes is demonstrated by three polymer processing methods, including hot‐press molding, injection molding, and solution casting. It is notable that all the recycled cross‐linked polymers display nearly invariable elongation/stress at break compared to the as‐synthesized samples. Further end‐group functionalization of this single molecular DA crosslinker provides the potential in preparing a wide range of recyclable cross‐linked polymers.

  相似文献   

109.
采用生物质原料腰果酚和9,10-二氢-9-氧杂-10-膦杂菲-10-氧化物(DOPO)为原料, 合成了一种磷杂菲改性腰果酚多元醇(P-Cardanol-Polyol), 并利用核磁共振氢谱和磷谱对其结构进行了表征. 利用P-Cardanol-Polyol对聚氨酯硬泡(RPUF)进行阻燃改性, 得到一系列阻燃聚氨酯硬泡. 考察了P-Cardanol-Polyol的用量对阻燃聚氨酯硬泡的形貌、 密度、 热导率、 压缩性能、 热稳定性以及阻燃性能的影响. 研究结果表明, P-Cardanol-Polyol对聚氨酯硬泡的密度影响可以忽略不计; 随着P-Cardanol-Polyol的加入, 阻燃聚氨酯硬泡的平均孔径逐渐减小, 热导率也逐渐降低. 未改性聚氨酯硬泡的最大热释放速率和总放热量分别为390 kW/m2和31.9 MJ/m2, 阻燃聚氨酯硬泡则降低至340 kW/m2和24.6 MJ/m2. 此外, 阻燃聚氨酯硬泡的压缩强度比未改性聚氨酯硬泡提升了约13%. 炭层分析结果表明, P-Cardanol-Polyol能够促进聚氨酯硬泡形成连续致密且具有良好抗热氧化性能的炭层, 有利于减少燃烧过程中可燃性气体的逸出, 从而提升阻燃性能.  相似文献   
110.
A series of FR-RPUF composites were prepared by a one-step water foaming process with ammonium polyphosphate (APP) and steel slag (SS) as flame retardants. Thermogravimetric analysis (TG), limiting oxygen index (LOI), UL-94 vertical combustion test, microscale combustion calorimetry (MCC), TG-Fourier transform infrared spectrometry (TG-FTIR), scanning electron microscopy (SEM), Raman spectra and FTIR were used to investigate the thermal stability, flame retardancy, combustion performance, gas phase products, and char residue morphology of FR-RPUF composites. TG test results showed that the initial decomposition temperature (T-5wt%) and char residue rate at 700°C of RPUF/APP/SS composites were significantly enhanced by the addition of APP and SS, and the thermal stability of the composites was improved. Flame retardant test results confirmed the significantly increased LOI values of RPUF/APP/SS composites with V-0 rating. TG-FTIR also confirmed the obviously decreased release of toxic gases and flammable gases in the combustion of RPUF/APP/SS composites. SEM and Raman spectra of char residues for the composites suggested that APP/SS system improved the compactness and graphitization degree of char layer for RPUF/APP/SS composite. The above researches provide a new strategy for the utilization of SS in fire safety engineering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号