首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4945篇
  免费   550篇
  国内免费   1356篇
化学   3228篇
晶体学   131篇
力学   1622篇
综合类   78篇
数学   543篇
物理学   1249篇
  2024年   22篇
  2023年   76篇
  2022年   192篇
  2021年   165篇
  2020年   241篇
  2019年   189篇
  2018年   177篇
  2017年   267篇
  2016年   270篇
  2015年   194篇
  2014年   288篇
  2013年   467篇
  2012年   265篇
  2011年   348篇
  2010年   239篇
  2009年   258篇
  2008年   318篇
  2007年   325篇
  2006年   334篇
  2005年   334篇
  2004年   274篇
  2003年   246篇
  2002年   187篇
  2001年   199篇
  2000年   157篇
  1999年   140篇
  1998年   121篇
  1997年   110篇
  1996年   82篇
  1995年   78篇
  1994年   69篇
  1993年   52篇
  1992年   35篇
  1991年   28篇
  1990年   24篇
  1989年   14篇
  1988年   10篇
  1987年   14篇
  1986年   13篇
  1985年   7篇
  1984年   9篇
  1982年   2篇
  1981年   1篇
  1979年   4篇
  1978年   1篇
  1977年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有6851条查询结果,搜索用时 15 毫秒
31.
The characterization and accurate determination of the chloride content in cement/concrete is very important for the assessment of the durability and safety of a concrete structure. The available analytical techniques are relatively expensive and time consuming. In this study, a laser-induced breakdown spectroscopy (LIBS) system was used for determination of elemental composition in three different types of cement samples. The plasma was generated by focusing a pulsed Nd: YAG laser at 1064 nm on the cement samples. The concentrations of different elements of significance for structural stability in cement samples were determined. The evaluation of the potential and the capabilities of LIBS as a rapid tool for characterization of cement samples is discussed. The optimum LIBS setup and experimental conditions to detect and measure chloride in building materials are reported. The LIBS results were compared with the results obtained using a standard analytical technique such as inductively coupled plasma emission spectroscopy (ICP–ES). The limits of detection were determined, and calibration curves were measured. The results of this investigation indicate the reliability of LIBS to characterize different cement samples and to assess the chloride content in these cements.  相似文献   
32.
With the expansion of human activities, there are more and more living areas adjacent to industrial and/or agricultural activities such as chemical processes, petroleum processes, paint finishing, food processing, livestock farming, composting plants etc. Bad odor is part of several nuisances caused by industrial and/or agricultural activities. Hydrogen sulfide (H2S) is a typical odorous molecule which causes foul odor at very low concentration. This molecule is formed in different industrial installations, in particular in coal combustion, and petrochemical refinery. The separation and/or transformation of H2S from gas phase to odorless products are important processes for sustainable development. In this paper, we communicate the preparation of new sorbents for the sorption of H2S from a synthetic gas effluent. These sorbents consist in an inorganic phase (hydroxyapatite) as host particles, and well-dispersed particles of a metal oxide as guest particles which are the active phase for the removal of H2S. At room conditions, iron, lead, and zinc doped calcium phosphates were found to be effective for the removal of H2S. The performance of the sorbents depends on preparation method and the nature of active phases. This opens new prospects for the treatment of H2S from gas phase.  相似文献   
33.
《Composite Interfaces》2013,20(5-6):459-477
A simplified calculation method for study of the growth of interfacial debonding between elastic fiber and elastic matrix ahead of the notch-tip in composites under displacement and stress controlled conditions was presented based on the shear lag approach in which the influences of residual stress and frictional shear stress at the debonded interface were incorporated. The calculation method was applied to a model two-dimensional composite. An outline is given of the difference and similarity in the growing behavior of the debonding between the displacement and stress controls, and of the influences of the residual stresses, frictional shear stress, the nature of the final cut component (fiber or matrix) and sample length on the debonding behavior.  相似文献   
34.
《Composite Interfaces》2013,20(4):275-289
This work was undertaken in order to increase the understanding of the mechanism responsible for fiber/matrix interaction in carbon fiber/thermoplastic composite. From results of previous study on carbon fiber/PEEK composite, which suggested that the formation of the fiber/ matrix interaction was primarily related to a chemisorption mechanism, a study was done of the conditions required to obtain efficient fiber/matrix interaction in PA-12 and PP/carbon fiber composites. The interest in studying carbon fiber composite based on PP and PA-12 was that these two matrices are very different in terms of reactivity, polyamide having many more reactive groups than polypropylene. As expected, due to the non-reactive chemical structure of the polypropylene, fiber/matrix interaction in carbon fiber/PP composite occurred only when the matrix was thermally degraded, i.e. when the composite was molded at high temperature or under long residence time at the melt temperature. For the carbon fiber/PA-12 composite, strong fiber/matrix interaction occurred readily at relatively low molding temperature, i.e. well before thermal degradation of the matrix. It was also found that the short beam shear strength in these composites seems to evolve with molding temperature, and a maximum interfacial strength was observed at a molding temperature corresponding to the thermal degradation of the matrix. This indicates that although matrix degradation often results in strong reduction in the composite performance, some matrix degradation can be beneficial in terms of interfacial mechanical properties. Finally, this work demonstrated that while the formation of fiber/matrix interaction seems to be primarily related to a chemisorption mechanism, the contribution of interphase crystallinity to the interfacial strength is not negligible. In fact, interfacial crystallinity was found to be essential to ensure optimum interfacial strength.  相似文献   
35.
《Composite Interfaces》2013,20(2):101-119
The interphase in polyethylene fibre/epoxy matrix composites is studied with FT-IR microspectroscopy using a set-up to investigate the matrix as close to the fibre as a few μm or less. It is shown that moisture present on the fibre surface is able to influence the polymerization reaction of the epoxy/anhydride matrix in an irreversible manner. This effect is enhanced for composites from the more hydrophilic polyvinylalcohol fibre. The fibre/matrix interaction in these thermoplastic fibre composites is also studied with DSC through the characterization of the fibre melting. A decreased 'DSC interaction parameter' is found if the composition of the interphase is changed by moisture. For a composite with an epoxy/amine matrix, on the other hand, the DSC interaction parameter is unaffected by moisture from the fibre surface.  相似文献   
36.
《Composite Interfaces》2013,20(3):257-275
Viscous and elastomeric silicones have been applied as interlayers to carbon fibers in order to develop a tougher, micro-crack resistant, thermally stable polyimide (PMR-15) composite. Carbon fiber is continuously coated with very high molecular weight polydimethylsiloxane (PDMS) and polyvinyl-methylsiloxane (PVMS). Dynamic mechanical properties of the composites have been determined and compared with uncoated carbon fiber reinforced PMR-15 polyimide composites. The presence of the interlayer is shown by the appearance of a new relaxation peak. The peak temperature is found to be a good indication of the degree of the cure of the silicone elastomer. Comparison of the storage moduli of uncoated and coated carbon fiber composites at the service temperature range of the composites indicates that the presence of the silicone interlayer affects the shear moduli of the composites. Apparent activation energy of the α transition of the matrix in the modified composites varies with the amount of interlayer and composition in concert with the impact strength.  相似文献   
37.
ABSTRACT

Crystalline silicon oxy-nitride (SiON) composite films are deposited on Si substrate for multiple (5, 15, 25 and 50) focus shots (FS) by plasma focus device. The X-rays diffraction patterns reveal the development of various diffraction peaks related to Si, Si3N4, and SiO2 phases which confirms the formation of SiON composite film. The intensity of Si3N4 (1 0 2) plane is linearly increased with the increase of FS. The Si3N4 (1 0 2) phase does not nucleate for 5 FS. Raman analysis confirms the formation of β–Si–N phase. Raman and Fourier transform infrared spectroscopy analysis reveals that the strength of chemical bonds like Si–N, Si–O formed during the deposition process of SiON composite films is associated with the bonds intensity which in turn depends on the number of FS. The field emission scanning electron microscopic analysis reveals that the surface morphology like size, shape and distribution of micro/nano-dimensional particles, film compactness and the formation of micro-rods, micro-teethes and micro-tubes of SiON composite films is entirely associated with the rise in substrate surface transient temperature which in turn depends on the increasing number of FS. The EDX spectrum confirms the presence of Si (22.5?±?4.7 at. %), N (13.4?±?4.5 at. %) and O (54.7?±?11.3 at. %) in the SiON composite film. The thickness of SiON composite film deposited for 50 FS is found to ~15.47?µm.  相似文献   
38.
The interaction of four parallel non-symmetric permeable cracks in a piezoelectric/piezomagnetic composite plane subjected to anti-plane shear stress loading was studied by the Schmidt method. The problem was formulated through a Fourier transform into four pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relationships among the electric displacement, magnetic flux and stress fields near the crack tips were obtained. The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the lengths and spacing of cracks. It was also revealed that the crack shielding effect is present in piezoelectric/piezomagnetic composites.  相似文献   
39.
A randomly inhomogeneous material may have macroscopic properties (elasticity, conductivity) scattered over some uncertainty intervals, despite the idealistic uniqueness assumption of homogenization theory. Based on minimum energy principles and certain statistical isotropy-symmetry hypotheses, our partly third-order bounds on the effective properties of random polycrystals are expected to estimate those scatter ranges. Explicit expressions are given and calculated for the elastic moduli of the random aggregates of some known monoclinic and triclinic crystals, which yield results in agreement with those calculated for higher-symmetry crystals: the moduli are determinable within an accuracy of two or three significant digits in most cases. It is shown, however, that with some real-world exotic crystals the bounds may fall far apart, and further theoretical and experimental studies on them deserve attention.  相似文献   
40.
《Composite Interfaces》2013,20(5):309-329
Chemically functionalized maleic anhydride (MAH)-grafted polypropylene matrix has been used (in place of polypropylene as matrix with compatibilizer) to process banana fiber/chemically functionalized polypropylene (BF/CFPP) composites, without using any compatibilizer and without any fiber modification by Palsule process. Fiber/matrix interfacial adhesion generated, in-situ, due to interactions between BF and the MAH of the CFPP matrix has been established by Fourier transform infrared spectroscopy and scanning electron microscopy. Mechanical properties of the BF/CFPP composites developed by Palsule process with in-situ fiber/matrix interfacial adhesion in this study have been found to be higher than those of the matrix and it increases with increasing amounts of fibers in composites, and are better than properties of literature reported BF/polypropylene composites processed with compatibilizers. Measured modulus of BF/CFPP composites compares well with values predicted by rule of mixtures, Hrisch model, Halpin-Tsai equations and its modified Nielsen version, and with Palsule equation. The feasibility of developing natural fiber/MAH grafted polyolefin composites by Palsule process without using any compatibilizer and without any fiber treatment is demonstrated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号