首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9218篇
  免费   1066篇
  国内免费   500篇
化学   2154篇
晶体学   63篇
力学   928篇
综合类   189篇
数学   3910篇
物理学   3540篇
  2024年   27篇
  2023年   69篇
  2022年   177篇
  2021年   202篇
  2020年   239篇
  2019年   228篇
  2018年   211篇
  2017年   279篇
  2016年   314篇
  2015年   236篇
  2014年   346篇
  2013年   699篇
  2012年   427篇
  2011年   461篇
  2010年   366篇
  2009年   440篇
  2008年   551篇
  2007年   542篇
  2006年   492篇
  2005年   426篇
  2004年   389篇
  2003年   418篇
  2002年   376篇
  2001年   353篇
  2000年   341篇
  1999年   309篇
  1998年   251篇
  1997年   190篇
  1996年   156篇
  1995年   135篇
  1994年   133篇
  1993年   110篇
  1992年   115篇
  1991年   103篇
  1990年   78篇
  1989年   64篇
  1988年   75篇
  1987年   53篇
  1986年   41篇
  1985年   54篇
  1984年   64篇
  1983年   31篇
  1982年   33篇
  1981年   44篇
  1980年   27篇
  1979年   19篇
  1978年   21篇
  1977年   23篇
  1976年   13篇
  1973年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
992.
Let G=Gn,p be a binomial random graph with n vertices and edge probability p=p(n),and f be a nonnegative integer-valued function defined on V(G) such that 0a≤f(x)≤bnp-2np ㏒n for every x ∈V(G). An fractional f-indicator function is an function h that assigns to each edge of a graph G a number h(e) in [0,1] so that for each vertex x,we have dh G(x)=f(x),where dh G(x) = x∈e h(e) is the fractional degree of x in G. Set Eh = {e:e ∈E(G) and h(e)=0}.If Gh is a spanning subgraph of G such that E(Gh)=Eh,then Gh is called an fractional f-factor of G. In this paper,we prove that for any binomial random graph Gn,p with p≥n-23,almost surely Gn,p contains an fractional f-factor.  相似文献   
993.
994.
995.
996.
Let G = G(n) be a graph on n vertices with maximum degree bounded by some absolute constant Δ. Assign to each vertex v of G a list L(v) of colors by choosing each list uniformly at random from all k‐subsets of a color set of size . Such a list assignment is called a random ‐list assignment. In this paper, we are interested in determining the asymptotic probability (as ) of the existence of a proper coloring ? of G, such that for every vertex v of G. We show, for all fixed k and growing n, that if , then the probability that G has such a proper coloring tends to 1 as . A similar result for complete graphs is also obtained: if and L is a random ‐list assignment for the complete graph Kn on n vertices, then the probability that Kn has a proper coloring with colors from the random lists tends to 1 as .Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 317‐327, 2014  相似文献   
997.
An unusual and surprising expansion of the form as , is derived for the probability pn that two randomly chosen binary search trees are identical (in shape, hence in labels of all corresponding nodes). A quantity arising in the analysis of phylogenetic trees is also proved to have a similar asymptotic expansion. Our method of proof is new in the literature of discrete probability and the analysis of algorithms, and it is based on the logarithmic psi‐series expansions for nonlinear differential equations. Such an approach is very general and applicable to many other problems involving nonlinear differential equations; many examples are discussed in this article and several attractive phenomena are discovered.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 67–108, 2014  相似文献   
998.
Two years ago, Conlon and Gowers, and Schacht proved general theorems that allow one to transfer a large class of extremal combinatorial results from the deterministic to the probabilistic setting. Even though the two papers solve the same set of long‐standing open problems in probabilistic combinatorics, the methods used in them vary significantly and therefore yield results that are not comparable in certain aspects. In particular, the theorem of Schacht yields stronger probability estimates, whereas the one of Conlon and Gowers also implies random versions of some structural statements such as the famous stability theorem of Erd?s and Simonovits. In this paper, we bridge the gap between these two transference theorems. Building on the approach of Schacht, we prove a general theorem that allows one to transfer deterministic stability results to the probabilistic setting. We then use this theorem to derive several new results, among them a random version of the Erd?s‐Simonovits stability theorem for arbitrary graphs, extending the result of Conlon and Gowers, who proved such a statement for so‐called strictly 2‐balanced graphs. The main new idea, a refined approach to multiple exposure when considering subsets of binomial random sets, may be of independent interest.Copyright © 2012 Wiley Periodicals, Inc. Random Struct. Alg., 44, 269‐289, 2014  相似文献   
999.
Given a group G, the model denotes the probability space of all Cayley graphs of G where each element of the generating set is chosen independently at random with probability p. In this article we show that for any and any family of groups Gk of order nk for which , a graph with high probability has diameter at most 2 if and with high probability has diameter greater than 2 if . We also provide examples of families of graphs which show that both of these results are best possible. Of particular interest is that for some families of groups, the corresponding random Cayley graphs achieve Diameter 2 significantly faster than the Erd?s‐Renyi random graphs. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 45, 218–235, 2014  相似文献   
1000.
We consider a random walk in random environment on a strip, which is transient to the right. The random environment is stationary and ergodic. By the constructed enlarged random environment which was first introduced by Goldsheid (2008), we obtain the large deviations conditioned on the environment (in the quenched case) for the hitting times of the random walk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号