全文获取类型
收费全文 | 1921篇 |
免费 | 95篇 |
国内免费 | 108篇 |
专业分类
化学 | 326篇 |
晶体学 | 12篇 |
力学 | 1235篇 |
综合类 | 25篇 |
数学 | 173篇 |
物理学 | 353篇 |
出版年
2024年 | 12篇 |
2023年 | 21篇 |
2022年 | 45篇 |
2021年 | 26篇 |
2020年 | 62篇 |
2019年 | 39篇 |
2018年 | 48篇 |
2017年 | 50篇 |
2016年 | 65篇 |
2015年 | 56篇 |
2014年 | 79篇 |
2013年 | 130篇 |
2012年 | 61篇 |
2011年 | 63篇 |
2010年 | 51篇 |
2009年 | 61篇 |
2008年 | 64篇 |
2007年 | 105篇 |
2006年 | 109篇 |
2005年 | 93篇 |
2004年 | 84篇 |
2003年 | 94篇 |
2002年 | 61篇 |
2001年 | 65篇 |
2000年 | 50篇 |
1999年 | 59篇 |
1998年 | 60篇 |
1997年 | 53篇 |
1996年 | 55篇 |
1995年 | 50篇 |
1994年 | 28篇 |
1993年 | 56篇 |
1992年 | 39篇 |
1991年 | 42篇 |
1990年 | 24篇 |
1989年 | 17篇 |
1988年 | 12篇 |
1987年 | 5篇 |
1986年 | 9篇 |
1985年 | 3篇 |
1984年 | 2篇 |
1983年 | 4篇 |
1982年 | 2篇 |
1981年 | 4篇 |
1980年 | 2篇 |
1977年 | 2篇 |
1976年 | 1篇 |
1971年 | 1篇 |
排序方式: 共有2124条查询结果,搜索用时 12 毫秒
991.
Interfacial adhesion between carbon fiber (CF) and epoxy resin in carbon fiber-reinforced epoxy composite, which was prepared by different heating process such as semiconductor microwave (MW) device and conventional electric oven, has been evaluated quantitatively. The interfacial shear strength (IFSS) between CF and epoxy resin, which was an indicator of adhesion on the interface, was measured by a single fiber fragmentation test. The single fiber fragmentation test showed that the IFSSs of the prepared specimens were different by heating methods. In the case of MW process, the curing reaction of epoxy resin on the CF interface would be progressed preferentially due to the selective heating of CF, resulting that the IFSSs of specimens prepared by MW irradiation were increased by enhancing the output power of MW. However, the IFSSs of the specimens were decreased by excessively high output power because the matrix resin on the CF interface was thermally degraded. As results, by optimizing the MW conditions of output power and irradiation time, the IFSS of the sample cured by MW was increased by 21% as compared to oven-heated one. It was found that the interfacial adhesion between CF and epoxy resin would be improved by the MW-assisted curing reaction on the surface of CF. 相似文献
992.
采用分子动力学方法模拟了氮化硼纳米管在轴压和扭转复合荷载作用下的屈曲和后屈曲行为.在各加载比例下,给出了初始线性变形阶段和后屈曲阶段原子间相互作用力的变化,确定了屈曲临界荷载关系.通过对屈曲模态的细致研究,从微观变形机理上分析了纳米管对不同外荷载力学响应的差异.研究结果表明,扶手型和锯齿型纳米管均呈现出非线性的屈曲临界荷载关系,复合加载下的屈曲行为具有强烈的尺寸依赖性.温度升高将导致屈曲临界荷载的下降,且温度的影响随加载比例的变化而变化.无论在简单加载或复合加载中,同尺寸的碳纳米管均比氮化硼纳米管具有更强地抵抗屈曲荷载的能力. 相似文献
993.
针对锂离子电池双层电极结构,建立了综合考虑锂扩散、应力、浓度影响的材料属性及集流体弹塑性变形的理论模型.基于所建立的模型,主要研究了在充电过程中集流体可能发生的塑性变形对电极中锂扩散及应力的影响.数值结果表明集流体的塑性变形会减弱其对活性层的约束,这不仅使得集流体和活性层中的应力得到明显缓解,而且还促进了锂在活性层中的扩散,提高了活性层的有效容量.与此同时,研究了集流体的屈服强度和塑性模量这两个参数的影响,结果表明,较小的屈服强度和较小的塑性模量能进一步弱化约束,松弛电极活性层中的应力,并增加其有效充电容量.研究结果为分层电极的结构设计和性能优化提供了一定的参考. 相似文献
994.
Baolin Wang Daning Shi Jianming Jia Guanghou Wang Xiaoshuang Chen Jijun Zhao 《Physica E: Low-dimensional Systems and Nanostructures》2005,30(1-2):45-50
Using atomistic molecular dynamics simulation with a Sutton–Chen many body potential, we studied the structural evolution and deformation mechanisms of nickel nanowires under homogeneous uniaxial compressions. Nickel nanowires with helical multi-shell structure and fcc-like crystalline structures have been considered. Elastic and plastic behaviors of nickel nanowires under compression were observed and their elastic limits were determined. Our simulations show that the nickel nanowires with helical multi-shell structure have greater yield strength than that of macroscopic solid. Above elastic limit, the plastic deformation of the nanowires shows behavior that is associated with superplasticity. The final atomic structures for the two kinds of nanowires are resemblant crystalline-like. 相似文献
995.
996.
997.
利用中国原子能科学研究院核工业放射性计量测试中心的5SDH-2串列加速器进行了ST-401薄塑料闪烁体的能量响应实验.选用T(p,n)3He反应和D(d,n)3He反应作为中子源,子源,中子束流采用复合屏蔽体进行准直,源强采用正比计数管和半导体望远镜进行监测,实验测量了厚度从0.16mm到2.00mm的八种规格薄闪烁体的能量响应曲线,对实验的结果的不确定度进行了分析.结果表明探测器的灵敏度随着晶体厚度的增加而增加,对于一定厚度的薄闪烁体,随着中子能量的增加,探测器的能量响应曲线坡度不大.
关键词:
塑料闪烁体
能量响应
正比计数器
半导体反冲质子望远镜 相似文献
998.
An investigation is reported of the thermal buckling and postbuckling of axially compressed double-walled carbon nanotubes (CNTs) subjected to a uniform temperature rise. The double-walled carbon nanotube is modeled as a nonlocal shear deformable cylindrical shell, which contains small-scale effects and van der Waals interaction forces. The governing equations are based on higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and include thermal effects. Temperature-dependent material properties, which come from molecular dynamics (MD) simulations, and an initial point defect, which is simulated as a dimple on the tube wall, are both taken into account. The small-scale parameter, e 0 a, is estimated by matching the buckling temperature of CNTs observed from the MD simulation results with the numerical results obtained from the nonlocal shear deformable shell model. The numerical illustrations concern the thermal postbuckling response of perfect and imperfect, single- and double-walled CNTs with different values of compressive load ratio. The results show that buckling temperature and postbuckling behavior of nanotubes are very sensitive to the small-scale parameter. The results reveal that temperature-dependent material properties have a significant effect on the thermal postbuckling behavior of both single- and double-walled CNTs. 相似文献
999.
Yanling Ma Shu Yan Zhang Chris Goodway Robert Done Beth Evans Oleg Kirichek 《高压研究》2013,33(3):364-375
Positions of elastic plastic interfaces play a vital role in safe design and safe use of high pressure vessels. The ENGIN-X neutron diffractometer at the ISIS facility was used to measure the residual strain profiles in a series of aluminium vessels which had been subjected to different pressure levels. The positions of elastic plastic interfaces of the autofrettaged pressure vessels were identified. The results revealed that the residual strain magnitude and the depth of the plastic region will increase with increasing autofrettage pressure level. When autofrettage pressure produces an elastic-plastic boundary at a greater depth than the geometric mean position of the vessel wall, reverse yielding will occur, hence the loss of the vessels’ elastic ability to its subsequent loading. The neutron experimental results agreed well with both the suggestions from existing literatures and the results from FE simulations. 相似文献
1000.
《Composite Interfaces》2013,20(1):67-74
In this paper, composite materials of short carbon fibers (CFs) and a thermosetting epoxy were prepared in three different ways: without curing, thermal curing, and thermal curing followed by microwave irradiation. Mechanical properties of the three kinds of CF reinforced plastic (CFRP) composites were studied to explore the effect of microwave irradiation. Microscopic study with the aid of a scanning electron microscope (SEM) was performed on fractured composite surfaces to identify the principle features of failure. Degree of polymerization of the epoxy resin in the three CFRP composites was evaluated by infrared (IR) spectroscopy. The microwave irradiated CFRP exhibited mechanically ductile behavior even though its highest degree of polymerization. Use of microwaves and resultant stronger physico-chemical linkage at the interface between CF and epoxy resin are the main feature of this study. 相似文献