首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4373篇
  免费   659篇
  国内免费   347篇
化学   1550篇
晶体学   82篇
力学   1584篇
综合类   31篇
数学   639篇
物理学   1493篇
  2024年   4篇
  2023年   38篇
  2022年   99篇
  2021年   72篇
  2020年   152篇
  2019年   114篇
  2018年   142篇
  2017年   149篇
  2016年   202篇
  2015年   135篇
  2014年   212篇
  2013年   304篇
  2012年   230篇
  2011年   236篇
  2010年   200篇
  2009年   239篇
  2008年   247篇
  2007年   282篇
  2006年   268篇
  2005年   246篇
  2004年   222篇
  2003年   204篇
  2002年   181篇
  2001年   146篇
  2000年   139篇
  1999年   130篇
  1998年   123篇
  1997年   117篇
  1996年   67篇
  1995年   78篇
  1994年   63篇
  1993年   38篇
  1992年   59篇
  1991年   43篇
  1990年   36篇
  1989年   23篇
  1988年   17篇
  1987年   20篇
  1986年   8篇
  1985年   15篇
  1984年   13篇
  1983年   9篇
  1982年   11篇
  1981年   4篇
  1980年   9篇
  1979年   11篇
  1978年   7篇
  1977年   5篇
  1974年   2篇
  1957年   2篇
排序方式: 共有5379条查询结果,搜索用时 296 毫秒
111.
Excessive bilirubin in the body of patient with liver dysfunction or metabolic obstruction may cause jaundice with irreversible brain damage, and new type of adsorbent for bilirubin is under frequent investigation. Herein, graphene oxide based core @ polyethersulfone‐based shell beads are fabricated by phase inversion method, amides and heparin‐like polymer are introduced to functionalize the core‐shell beads. The beads are successfully prepared with obvious core‐shell structure, adequate thermostability and porous shell. Clotting times and protein adsorption are investigated to inspect the hemocompatibility property of the beads. The adsorption of bilirubin is systematically investigated by evaluating the effects of contacting time, initial concentration and temperature on the adsorption, which exhibits improved bilirubin adsorption amount for the beads with amides contained cores or/and shells. It is worth believing that the amides and heparin‐like polymer co‐functionalized core‐shell beads may be utilized in the field of hemoperfusion for bilirubin adsorption.  相似文献   
112.
113.
The design of electrode materials with rational core/shell structures is promising for improving the electrochemical properties of supercapacitors. Hence, hierarchical FeCo2S4@FeNi2S4 core/shell nanostructures on Ni foam were fabricated by a simple hydrothermal method. Owing to their structure and synergistic effect, they deliver an excellent specific capacitance of 2393 F g−1 at 1 A g−1 and long cycle lifespan as positive electrode materials. An asymmetric supercapacitor device with FeCo2S4@FeNi2S4 as positive electrode and graphene as negative electrode exhibited a specific capacitance of 133.2 F g−1 at 1 A g−1 and a high energy density of 47.37 W h kg−1 at a power density of 800 W kg−1. Moreover, the device showed remarkable cycling stability with 87.0 % specific-capacitance retention after 5000 cycles at 2 A g−1. These results demonstrate that the hierarchical FeCo2S4@FeNi2S4 core/shell structures have great potential in the field of electrochemical energy storage.  相似文献   
114.
Boronic acid functionalized materials have gained much attention in both chemistry and biology fields due to their multivalent covalent interactions with cis-diol containing (macro) molecules. The remarkable progress in this field has resulted in the development of their biomedical applications, such as, biosensors and nanocarriers. In this study, the spherical nanoparticles consisting of glycerol and 2,5-thiophenediylbisboronic acid were synthesized by one-pot ring opening copolymerization of a mixture of glycidol and 2,5-thiophenediylbisboronic acid. The synthesized nanoparticles were used for the modification of the glassy carbon electrode and the determination of Guaifenesin. The synthesized polymeric nanoparticles were characterized by different spectroscopic and microscopic methods including UV–vis, IR, NMR, DLS, and SEM. Additionally, the electrochemical behavior of the fabricated electrode toward Guaifenesin was investigated with cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   
115.
A novel, green and effective approach to fabricate uniform functional spherical polymer particles remains a huge challenge. Herein, we present a novel one-pot approach superior to traditional precipitation polymerization, called precipitated droplets in-situ cross-linking (PDIC) polymerization, by which uniform particles are fabricated on large scale without any toxic organic solvents or stabilizers. With this approach, functional spherical polymer particles can be fabricated continuously only relying on gravity, and the preparation process is thus super-fast. For example, polyacrylic acid (PAA) hydrogel particles with ultra-high adsorption capacity are fabricated within only 60 s. Moreover, we have successfully fabricated different functional hydrogel particles, including anticoagulant, reinforced and bactericidal particles, based on the monomers of 2-acrylamide-2-methylpropanesulfonic acid (AMPS), acrylamide (AM) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (DMC), respectively. This approach has several advantages: (i) the technology is green; (ii) the size and porosity of the particles can be well-controlled; (iii) various functional spherical hydrogel particles can be fabricated by using corresponding monomers. More importantly, this approach fits the commercialization of functional hydrogel particles on demand.  相似文献   
116.
The development of cost-effective and durable oxygen electrocatalysts remains highly critical but challenging for energy conversion and storage devices. Herein, a novel FeNi alloy nanoparticle core encapsulated in carbon shells supported on a N-enriched graphene-like carbon matrix (denoted as FeNi@C/NG) was constructed by facile pyrolyzing the mixture of metal salts, glucose, and dicyandiamide. The in situ pyrolysis of dicyandiamide in the presence of glucose plays a significant effect on the fabrication of the porous FeNi@C/NG with a high content of doped N and large specific surface area. The optimized FeNi@C/NG catalyst displays not only a superior catalytic performance for the oxygen reduction reaction (ORR, with an onset potential of 1.0 V and half-wave potential of 0.84 V) and oxygen evolution reaction (OER, the potential at 10 mA cm−2 is 1.66 V) simultaneously in alkaline, but also outstanding long-term cycling durability. The excellent bifunctional ORR/OER electrocatalytic performance is ascribed to the synergism of the carbon shell and FeNi alloy core together with the high-content of nitrogen doped on the large specific surface area graphene-like carbon.  相似文献   
117.
Ni-Dimethylglyoxime complex immobilized on functionalized Fe3O4 was synthesized by a post-grafting way and utilized as a novel, thermally stable, recoverable, and efficient for green synthesis of dicoumarols through reaction of 4-hydroxycoumarin with various aldehydes in excellent yields and higher rate. Fe3O4@SiO2-silylcyclopropyl-dimethylglyoxime-Ni superparamagnetic nanoparticles (MNPs) were investigated by Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, vibrating sample magnetometer, and Brunauer–Emmett–Teller technique. This nanocatalyst could be conveniently recovered via the use of an external magnetic field and reused for subsequent reactions for at least 7 times without any remarkable change and decrease in catalytic activity.  相似文献   
118.
An amino‐functionalized silica‐coated Fe3O4 nanocomposite (Fe3O4@SiO2/APTS) was synthesized. The Fe3O4@SiO2 microspheres possessed a well‐defined core–shell structure, uniform sizes and high magnetization. An immobilized ruthenium nanoparticle catalyst (Fe3O4@SiO2/APTS/Ru) was obtained after coordination and reduction of Ru3+ on the Fe3O4@SiO2/APTS nanocomposite. The Ru nanoparticles were not only ultra‐small with nearly monodisperse sizes but also had strong affinity with the surface of Fe3O4@SiO2/APTS. The obtained catalyst exhibited excellent catalytic performance for the hydrogenation of a variety of aromatic nitro compounds, even at room temperature. Moreover, Fe3O4@SiO2/APTS/Ru was easily recovered using a magnetic field and directly reused for at least five cycles without significant loss of its activity.  相似文献   
119.
The construction of nanoscopic materials by synthetic methodologies that iterate covalent and supramolecular interactions has been developed over the past three decades as a powerful method to afford complex functional materials. Indeed, the present study was nearly lost in the archives of dissertation research completed in 2001, which revealed nanoscale conformational dynamics in the segmental reorganization, and partial inversion, of topologically shell crosslinked knedel-like (SCK) nanoparticles. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 204–214  相似文献   
120.
Thermal processing at various temperatures has been used to fabricate poly(vinylidene fluoride‐co‐trifluoroethylene) [P(VDF‐co‐TrFE)] films with varied crystalline properties in an attempt to improve their piezoelectric properties. Although the dielectric constant of the films annealed at higher temperature is smaller than that of cooled and quenched ones, it has been shown that the annealed films possess larger crystallinity and stacked lamellar crystal grain size. The ferroelectric domains deriving from crystal region in all the samples are effectively improved by hot polarization. As a result, the remnant polarizations (Pr) and coercive electric field (Ec) of the corresponding films are improved at a low frequency due to the response of dipoles in crystal phase, and the largest piezoelectric constant in the longitudinal thickness mode (d33=?25 pC/N) is obtained in an annealed copolymer film. The results illustrate improving the crystal structure of P(VDF‐co‐TrFE) is an effective way to realize high electromechanical properties, which provides broadly applied scenery for this kind of copolymer in piezoelectric components. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号