首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11150篇
  免费   1402篇
  国内免费   3137篇
化学   7380篇
晶体学   418篇
力学   3561篇
综合类   118篇
数学   858篇
物理学   3354篇
  2024年   40篇
  2023年   179篇
  2022年   432篇
  2021年   466篇
  2020年   485篇
  2019年   381篇
  2018年   325篇
  2017年   544篇
  2016年   602篇
  2015年   454篇
  2014年   623篇
  2013年   911篇
  2012年   712篇
  2011年   788篇
  2010年   662篇
  2009年   731篇
  2008年   771篇
  2007年   848篇
  2006年   737篇
  2005年   734篇
  2004年   668篇
  2003年   600篇
  2002年   450篇
  2001年   416篇
  2000年   341篇
  1999年   300篇
  1998年   254篇
  1997年   239篇
  1996年   179篇
  1995年   152篇
  1994年   130篇
  1993年   96篇
  1992年   88篇
  1991年   68篇
  1990年   51篇
  1989年   34篇
  1988年   37篇
  1987年   40篇
  1986年   33篇
  1985年   15篇
  1984年   18篇
  1983年   7篇
  1982年   10篇
  1981年   9篇
  1980年   2篇
  1979年   13篇
  1978年   3篇
  1977年   2篇
  1971年   3篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
A general implicit solution for determining volume-preserving transformations in the n-dimensional Euclidean space is obtained in terms of a set of 2n generating functions in mixed coordinates. For n=2, the proposed representation corresponds to the classical definition of a potential stream function in a canonical transformation. For n=3, the given solution defines a more general class of isochoric transformations, when compared to existing methods based on multiple potentials. Illustrative examples are discussed both in rectangular and in cylindrical coordinates for applications in mechanical problems of incompressible continua. Solving exactly the incompressibility constraint, the proposed representation method is suitable for determining three-dimensional isochoric perturbations to be used in bifurcation theory. Applications in non-linear elasticity are envisaged for determining the occurrence of complex instability patterns for soft elastic materials.  相似文献   
972.
Using an averaging procedure for large ensembles of dislocations, a basic but mathematically non-trivial modelling framework is developed for the transport of dislocation densities in a macroscopically homogeneous and isotropic film of a crystalline solid subjected to uniform shear. It has the form of a system of nonlinear, non-local partial differential equations of the first order with a source-type right-hand side. The solution to this system is studied numerically, and the associated average stress is evaluated as a function of time. The resulting stress-strain relations exhibit a size effect similar to those that previously motivated strain-gradient plasticity theories.  相似文献   
973.
In this paper, the dynamic characteristics are examined for a cylindrical membrane composed of a transversely isotropic incompressible hyperelastic material under an applied uniform radial constant pressure at its inner surface. A second-order nonlinear ordinary differential equation that approximately describes the radial oscillation of the inner surface of the membrane with respect to time is obtained. Some interesting conclusions are proposed for different materials, such as the neo-Hookean material, the Mooney-Rivlin material and the Rivlin-Saunders material. Firstly, the bifurcation conditions depending on the material parameters and the pressure loads are determined. Secondly, the conditions of periodic motion are presented in detail for membranes composed of different materials. Meanwhile, numerical simulations are also provided.  相似文献   
974.
In this study, we report on the mechanical properties, failure and fracture modes in two cases of engineering materials; that is transparent silicon oxide thin films onto poly(ethylene terephthalate) (PET) membranes and glass-ceramic materials. The first system was studied by the quazi-static indentation technique at the nano-scale and the second by the static indentation technique at the micro-scale. Nanocomposite laminates of silicon oxide thin films onto PET were found to sustain higher scratch induced stresses and were effective as protective coating material for PET membranes. Glass-ceramic materials with separated crystallites of different morphologies sustained a mixed crack propagation pattern in brittle fracture mode.  相似文献   
975.
This work reports isothermal reversible variation of magnetization in nanoporous Pd-Ni alloys subjected to continuous charging and discharging of the sample in aprotic electrolyte medium. Polarizing metal surface with excess charge also finds strain in the nanoporous structure using the sample as working electrode. Therefore, it is proposed that pressure induced by strain is the key parameter for the observed reversible magnetization in the transition metal alloys.  相似文献   
976.
Scatter observed in the fatigue response of a nickel-based superalloy, U720, is linked to the variability in the microstructure. Our approach is to model the energy of a persistent slip band (PSB) structure and use its stability with respect to dislocation motion as our failure criterion for fatigue crack initiation. The components that contribute to the energy of the PSB are identified, namely, the stress field resulting from the applied external forces, dislocation pile-ups, and work-hardening of the material is calculated at the continuum scale. Further, energies for dislocations creating slip in the matrix/precipitates, interacting with the GBs, and nucleating/agglomerating within the PSB are computed via molecular dynamics simulations. Through this methodology, fatigue life is predicted based on the energy of the PSB, which inherently accounts for the microstructure of the material. The present approach circumvents the introduction of uncertainty principles in material properties. It builds a framework based on mechanics of microstructure, and from this framework, we construct simulated microstructures based on the measured distributions of grain size, orientation, neighbor information, and grain boundary character, which allows us to calculate fatigue scatter using a deterministic approach. The uniqueness of the approach is that it avoids the large number of parameters prevalent in previous fatigue models. The predicted lives are in excellent agreement with the experimental data validating the model capabilities.  相似文献   
977.
A novel organic–inorganic silica‐based fluorescent probe was designed, synthesized and characterized by different techniques such as XRD, BET, TGA, and FT‐IR. The fluorescence properties of the probe were studied in the presence of a variety of metal‐ions in water. The results revealed that various metal‐ions negligibly vary the emission intensity of the probe except for Hg2+, which quenched the intensity dramatically. The selectivity of the probe toward Hg2+ ion was further investigated in the presence of common competing metal‐ions and the results demonstrated the high selectivity of the probe toward Hg2+ ion. The fluorescence emission of the probe was also studied as a function of the concentration of Hg2+ ion. A nanomolar limit of detection was estimated for Hg2+, indicating a high sensitivity. Furthermore, the probe showed INHIBIT‐type logic behavior with Hg2+ and H+ as inputs. Also, the optimum pH range was studied in addition to reversibility and real world applicability of the probe.  相似文献   
978.
979.
Based on the thermo-electro-elastic coupling theory, the mathematical model for a surface heated piezoelectric semiconductor (PS) plate is developed in the time domain. Applying the direct and inverse Laplace transformations to the established model, the mechanical and electrical responses are investigated. The comparison between the analytical solution and the finite element method (FEM) is conducted, which illustrates the validity of the derivation. The calculated results show that the maximum values of the mechanical and electrical fields appear at the heating surface. Importantly, the perturbation carriers tend to concentrate in the zone near the heating surface under the given boundary conditions. It can also be observed that the heating induced elastic wave leads to jumps for the electric potential and perturbation carrier density at the wavefront. When the thermal relaxation time is introduced, all the field quantities become smaller because of the thermal lagging effect. Meanwhile, it can be found that the thermal relaxation time can describe the smooth variation at the jump position. Besides, for a plate with P-N junction, the effect of the interface position on the electrical response is studied. The effects of the initial carrier density on the electrical properties are discussed in detail. The conclusions in this article can be the guidance for the design of PS devices serving in thermal environment.  相似文献   
980.
加速管中的高次模(HOM)能导至累积束流崩溃,因此这些模式必须被抑制.在S波段直线对撞机中(SBLC),采用了在束流孔膜片上复盖适当的损耗材料的方式.HOM的Q值被减小了5倍,而基模的Q值几乎保持不变.3种材料被考虑,即:stainlesssteel,kanthal和galvedc为了对具有这种涂层的加速腔进行高功率测试,一个两腔的谐振器结构被设计.本文描述了高功率测试的原理,过程以及初步的结果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号