首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2696篇
  免费   230篇
  国内免费   300篇
化学   2073篇
晶体学   38篇
力学   516篇
综合类   3篇
数学   101篇
物理学   495篇
  2024年   11篇
  2023年   31篇
  2022年   68篇
  2021年   67篇
  2020年   137篇
  2019年   90篇
  2018年   94篇
  2017年   136篇
  2016年   165篇
  2015年   122篇
  2014年   135篇
  2013年   276篇
  2012年   134篇
  2011年   150篇
  2010年   141篇
  2009年   171篇
  2008年   151篇
  2007年   164篇
  2006年   174篇
  2005年   144篇
  2004年   121篇
  2003年   93篇
  2002年   65篇
  2001年   53篇
  2000年   45篇
  1999年   43篇
  1998年   41篇
  1997年   30篇
  1996年   35篇
  1995年   18篇
  1994年   30篇
  1993年   16篇
  1992年   18篇
  1991年   15篇
  1990年   9篇
  1989年   5篇
  1988年   11篇
  1987年   4篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1973年   1篇
  1957年   2篇
排序方式: 共有3226条查询结果,搜索用时 62 毫秒
101.
以具有一维介孔孔道的金属有机框架材料CYCU-3作为主体材料,采用碘氧化法在其孔道内进行了吡咯的聚合反应,从而得到了复合材料PPy@CYCU-3。利用粉末X射线衍射、扫描电镜、热重、红外、荧光光谱等对CYCU-3、吸附吡咯后的Py@CYCU-3以及孔内聚合后的复合材料PPy@CYCU-3进行了表征,证明了孔内聚合的成功进行,而且在聚合过程中,CYCU-3基本保持了结构的稳定,形貌也未发生改变。而且,PPy@CYCU-3复合材料是具有多孔性和电导性的多功能材料。氮气吸附表明该材料为典型的微孔材料,其BET比表面积为420 m2·g~(-1)。电导测试表明该材料的电导率为10-7 S·cm~(-1),高于CYCU-3的电导率(σ≈10-13S·cm-1)6个数量级,是一种半导体材料。  相似文献   
102.
In this study, date palm waste that was naturally treated as a filler in a linear-low density polyethylene (LLDPE) matrix was recycled to prepare green composites. Two types of LLDPE, based on basic additives, were used. UV stabilizer and the slip and anti-block were added as basic additives. The objective of this study was to examine the effect of these basic additives and the treated filler on the biodegradation, morphological, and thermal properties of the prepared samples by a soil burial test. The samples were characterized by Fourier-transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD). Weight loss was calculated to investigate the biodegradation of the sample, and SEM and thermogravimetric analyses were performed to reveal the morphology and thermal properties before and after burial, respectively. Results showed that the presence of the bio-filler accelerated the biodegradation of the composites. The UV stabilizer had a positive impact on biodegradation factors whereas anti-block additives appeared resistant to biodegradable factors. The morphology and thermal stability of all the prepared samples changed after burial due to the effects of biodegradation during the burial.  相似文献   
103.
Here are reported composites made by crosslinking unsaturated units in canola, sunflower, or linseed oil with sulfur to yield CanS , SunS , and LinS , respectively. These plant oils were selected because the average number of crosslinkable unsaturated units per triglyceride vary from 1.3 for canola to 1.5 for sunflower and 1.8 for linseed oil. The remeltable composites show compressive strengths that increase with increasing unsaturation number from CanS (9.3 MPa) to SunS (17.9 MPa) to LinS (22.9 MPa). These values for SunS and LinS are competitive when compared with the value of 17 MPa required for residential building using traditional Portland cement. The plant oil composites are recyclable over many cycles and can retain up to 100% of strength after 24 hr in oxidizing acid under conditions where Portland cement is dissolved in under 30 min. Infusion of the composites into premade cement blocks affords them with significantly improved acid resistance as well. This work thus provides a simple, nearly 100% atom economical route to convert plant oils and waste sulfur to composites having enhanced performance over commercial structural materials.  相似文献   
104.
Quasi-static tensile test of UHMWPE fiber-reinforced composite laminate is challenging to perform due to low interlaminar shear strength and low coefficient of friction. Tensile tests proposed in the literature were conducted and limitations associated with each method led to the evolution of a new method. Tensile test of single-ply was realized as the best representative of tensile strength of a composite than tensile test of UHMWPE laminate. A fixture was developed for single-ply tests which increased friction and provided the mechanical constraint to slipping. The fixture is easy to fabricate and has provided repeatable results for eight grades of UHMWPE fiber-based (0/90) fabrics. Reported tensile strengths are in quite high range of 900–1500 MPa.  相似文献   
105.
Self-reinforced composites are polymeric materials formed by a reinforcement core and a low-melting point skin, which acts as a matrix after the consolidation step. These materials are widely exploited in industrial applications for their mechanical resistance and durability, which are themselves influenced by processing conditions and polymer composition. In the present work, two similar polypropylene-based commercial fabrics were used to evaluate the surface modifications after laminate compaction and after artificial aging using atomic force microscopy. The results were correlated with the chemical and physical-chemical interactions obtained from scanning electron microscopy, transmission electron microscopy, raman and thermal analysis experiments. Single tape consolidated laminate before and after aging displayed different superficial features that can explain the differences in the macroscopic behavior of the two products.  相似文献   
106.
The ever increasing applications of photopolymers from historical thin (<50 µm) coatings to very deep samples (>1 cm) require the development of robust 4D monitoring strategies able to assess photopolymerization efficiencies (first dimension) as a function of time (second dimension) and position (third and fourth dimensions). Therefore, here, we demonstrated that thermal imaging is a valuable photopolymerization monitoring device showing: (a) very high response times (<1 s); (b) high repeatability of the measurement; (c) strong adaptability of the setup to various conditions (e.g., onto irregular surfaces or inside a real time Fourier transformed infrared spectrometer (RT‐FTIR)); (d) extremely deep photopolymerization follow‐ups (and subsequent rationalization) with good resolution in time and in space (real‐time thermal imaging microscopy experiments); (e) adaptability to applied materials. This monitoring strategy was found particularly robust when taking into account all the heat generating phenomena (i.e., direct heating from the lamp vs. temperature raised due to monomer conversion). As a result, we propose thermal imaging as the next reference monitoring system for the new ranges of thick and/or filled samples (e.g., 3D objects, composites) and/or applied photopolymerizations (e.g., 3D printing) more and more present in the literature. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 889–899  相似文献   
107.
The sustainable resveratrol‐based phthalonitrile was used in the preparation of E‐glass fiber‐reinforced phthalonitrile composite panels fabricated by hot pressed prepreg consolidation with bis[4‐(3‐aminophenoxy)phenyl]sulfone (m‐BAPS) as the curing additive. This amorphous monomer exhibited excellent viscosities at temperatures below 200 °C, which is applicable to standard processing conditions. Rheometric measurements were used to evaluate the cure of the composite as a function of the postcure conditions. The composite retains >95% of its room temperature storage modulus up to 450 °C based on these postcuring parameters. More importantly, flammability performance of the composite—which was determined in terms of ignitability, heat release, and mass loss rate—excels over other state‐of‐the‐art polymer/glass composites. Even under the most extreme heat fluxes (e.g., 100 kW⋅m−2), the composite performs exceptionally well suggesting that resveratrol‐based phthalonitrile composites can be used in fire‐resistant applications. Published 2018. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1128–1132  相似文献   
108.
Three pseudorotaxanes (PpR) comprised of poly (ε-caprolactone) (PCL) and α-cyclodextrin (α-CD) with varying stoichiometric ratios were synthesized and characterized. Wide-angle X-ray diffraction (WAXD) and thermogravimetric (TGA) analyses provided conclusive evidence for complexation between the guest PCL and host α-CD. The as-synthesized and characterized PpRs were used at 10 and 20% concentrations as nucleants to promote the bulk PCL crystallization in composite films. Both WAXD and TGA provided evidence for intact PpR structures in the composite films. Isothermal differential scanning calorimetric (I-DSC) analyses, performed at various crystallization temperatures demonstrated significant differences in the crystallization patterns among the composite films. In addition, I-DSC analyses showed higher Avrami constant values (n) in the PpR-nucleated composite PCL films (n ~ 3), indicating 3-dimensional crystal growth. In the case of neat PCL films, however, lower n values indicated crystal growth in 1-dimensions or 2-dimensions. Moreover, atomic force microscopic analyses showed large crests and pits in PpR-nucleated PCL composites, with irregular morphologies leading to higher surface roughness. To the contrary, the crests and pits were much smaller in the neat PCL films, resulting in lower surface roughness values. Finally, mechanical testing revealed higher tensile strength for PpR-nucleated PCL composites films, demonstrating larger load bearing capabilities. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1529–1537  相似文献   
109.
《先进技术聚合物》2018,29(1):216-225
Rubber magnetic composites were prepared by incorporation of strontium ferrite into rubber compounds based on acrylonitrile butadiene rubber and ethylene propylene diene monomer rubber. The sulfur, peroxide, and mixed sulfur/peroxide curing systems were introduced as cross‐linking agents for rubber matrices. The aim was to investigate the influence of curing system composition on curing process and cross‐link density of composite materials. Then, static and dynamic mechanical properties and thermal and magnetic characteristics were investigated in relation to the cross‐link density of rubber magnetic composites and structure of the formed cross‐links. The changes of dynamical and physicomechanical properties were in close correlation with the change of cross‐link density, whereas the tensile strength of magnetic composites showed increasing trend with increasing amount of peroxide in mixed curing systems. On the other hand, thermal conductivity and magnetic characteristics were found not to be dependent on the curing system composition.  相似文献   
110.
古英  余建华 《中国物理》2002,11(6):601-607
We investigate the linear and nonlinear optical responses of dilute anisotropic networks using Green's function formalism [Gu Y et al 1999 Phys. Rev. B 59 12847]. For different applied fields, numerical calculations indicate that a large third-order nonlinear enhancement and a broad infrared absorption arise from the geometric anisotropy. We also show the overlap and separation between the absorption peak and nonlinear enhancement peak when the applied field is parallel and perpendicular to the anisotropy, respectively. The results can be understood in terms of the inverse participation ratios with q=2 and the spectral distribution of optical responses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号