A ThermoFinnigan sheath liquid flow capillary electrophoresis-mass spectrometry system designed for coupling via a co-axial interface was coupled through an adapted via an alternative, commercially available interface for orthogonal sampling. The affordable, reversible structural alterations made in the commercial LC-MS interface resulted in improved analytical performance.The results of a conventional capillary electrophoresis (CE) method using a commercial co-axial source to determine antioxidant phenolic acids present in virgin olive oil, were compared with those obtained by using a modified orthogonal sampling position. In both cases, separations were done using a 10 mM ammonium acetate/ammonium hydroxide buffer solution at pH 10.0 and a constant applied voltage of 25 kV. The operating variables for the mass spectrometry interface were re-optimized for the modified orthogonal orientation. This allowed the sheath liquid, sheath gas flow rates and capillary voltage to be lowered with respect to the co-axial coupling configuration. In addition, the orthogonal sampling position provided a higher selectivity by effect of ion sampling excluding larger droplets—with an increased momentum along the axis—which were drained through the sink at the bottom of the ion source. Also, the new configuration facilitated sample ionization, improved electrospray stability and led to stronger signals as a result.The new system was validated in terms of precision (repeatability), linearity, and limits of detection and quantification. A comparison of the validation data with the results previously obtained by using a commercial co-axial configuration revealed the adapted orthogonal sampling position to provide better repeatability in both migration times and relative peak areas (<1% and 7% respectively with n = 15 replicates), a good linear range (with levels in the microgram-per-litre region) and lower limits of detection—especially for the compounds detected with the lowest sensitivity when co-axial ESI was used, as HFA, GEN, FER and VAN finding LOD among 24-3.0 μg L−1 respectively. 相似文献
Equations between the differential order and the maximum of the fractional-order differential for the specified peak signals are developed based on the variation of the maximum of the specified peak signals at different orders. Also, equations between the differential order and the zero-crossing of the fractional-order differential of the specified peak signals are proposed according to the variation of the zero-crossing of the specified peak signals at different orders. Characteristic paramters of the Gaus- sian peak, Lorentzian peak, and Tsallis peak can be estimated using estimator I and estimator II which are obtained by the equations above. As a result, a new method is presented to resolve the overlapped peaks signal. Firstly, a fractional-order differential of the specified peak signals is obtained with the fractional-order differentiation filter. Then, characteristic paramters of the specified peak signals can be extracted using estimator I and estimator II. Finally, the Tsallis peak is used as a model to assign the overlapping peak signals correctly. Experimental results show that the proposed method is efficient and effective for the simulated overlapping peaks and detected overlapping voltammetric peak signals. 相似文献
Summary: The morphology and fracture behaviour of polycarbonate (PC)/multiwalled carbon nanotube (MWNT) composites have been studied by AFM and post‐yield fracture mechanics. The essential work of fracture (EWF) method has been used to distinguish between two terms representing the resistance to crack initiation and crack propagation. A maximum in the non‐essential work of fracture was observed at 2 wt.‐% MWNT, demonstrating enhanced resistance to crack propagation compared to pure PC. At 4 wt.‐% MWNT, a tough‐to‐brittle transition has been observed. The time‐resolved in‐situ strain field analysis revealed that the onset of crack initiation was shifted to a shorter time for nanocomposites with 4 wt.‐% MWNT compared to that with 2 wt.‐%, and thus explained the existence of a tough‐to‐brittle transition in these nanocomposites.
Summary: A mechanical model was developed to describe qualitatively and quantitatively the stress‐strain‐time behavior of a prepared shape memory crosslinked polyethylene during hot stretching, stress relaxation under 200% strain at high temperature and strain recovery of the heat shrinkable polymer. The stress‐strain, the stress relaxation and the irrecoverable strain behavior of the model were established by driving the constitutive equation, which could qualitatively represent the behavior of the real material. By choosing significant values for the parameters of the proposed model, an excellent fit was obtained between the experimental behavior of the polymer and that predicted by the model. It was also revealed that the main source responsible for the imperfect recovery of the induced strain observed was the stress relaxation occurring during the stretch holding‐cooling time step.
Stress relaxation of crosslinked polyethylene under 200% strain at 160 °C. 相似文献