首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13936篇
  免费   1333篇
  国内免费   1002篇
化学   3135篇
晶体学   63篇
力学   1949篇
综合类   186篇
数学   6923篇
物理学   4015篇
  2024年   30篇
  2023年   150篇
  2022年   444篇
  2021年   451篇
  2020年   307篇
  2019年   329篇
  2018年   371篇
  2017年   468篇
  2016年   486篇
  2015年   385篇
  2014年   693篇
  2013年   912篇
  2012年   847篇
  2011年   747篇
  2010年   669篇
  2009年   815篇
  2008年   810篇
  2007年   869篇
  2006年   747篇
  2005年   667篇
  2004年   565篇
  2003年   495篇
  2002年   478篇
  2001年   414篇
  2000年   397篇
  1999年   333篇
  1998年   334篇
  1997年   289篇
  1996年   213篇
  1995年   239篇
  1994年   206篇
  1993年   152篇
  1992年   137篇
  1991年   120篇
  1990年   91篇
  1989年   87篇
  1988年   65篇
  1987年   54篇
  1986年   44篇
  1985年   64篇
  1984年   59篇
  1983年   15篇
  1982年   38篇
  1981年   27篇
  1980年   19篇
  1979年   38篇
  1978年   27篇
  1977年   31篇
  1976年   20篇
  1974年   5篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
硝酸乙醇法测定纤维素含量   总被引:18,自引:0,他引:18  
王林风  程远超 《化学研究》2011,22(4):52-55,71
根据秸秆乙醇的工艺特点,对硝酸乙醇法测定玉米秸秆、小麦秸秆、稻草及其预处理后物料的纤维素含量进行了研究.优化了粉碎时长、硝酸-乙醇混合液处理遍数、试样粒度及抽滤漏斗孔径四个参数.确定了优化后的测定方法:秸秆试样粉碎时长15 s,硝酸-乙醇混合液处理4遍,粒度40~60目,使用G2玻璃砂芯漏斗.秸秆预处理后物料试样粉碎时...  相似文献   
992.
In this paper, a modified sub-population teaching-learning-based optimization (MS-TLBO) algorithm is proposed to improve the exploration and exploitation capacities by including the concept of number of teachers, adaptive teaching factor, learning through tutorial, and self-motivated learning in the basic TLBO algorithm. The multiple frequency responses to the structural optimization problems are challenging due to its search space, which is implicit, nonconvex, nonlinear, and often leading to divergence. The viability and efficiency of the proposed method are tested by five structural benchmark problems of shape and size optimization with multiple natural frequency constraints on the planar and space trusses. The results reveal that MS-TLBO is more effective as compared to the original TLBO and other state-of-the-art algorithms.  相似文献   
993.
This research is devoted to the modeling of high-speed rectilinear penetration of a rigid axisymmetric body (impactor with a flat bluntness) into an elastic–plastic media with account for its rotation about the axis of symmetry. The body has an arbitrary shape of the meridian. The resistance to the motion is represented as the sum of the body drag and the contribution of friction. The dynamic system governing the body motion is derived and the qualitative and numerical analysis of the projectile movement and perforation of a slab are performed. The problem of shape optimization of impactor with a flat bluntness is studied using evolutionary algorithm.  相似文献   
994.
Electrochemical, acoustic and imaging techniques are used to characterise surface cleaning with particular emphasis on the understanding of the key phenomena relevant to surface cleaning. A range of novel techniques designed to enhance and monitor the effective cleaning of a solid/liquid interface is presented. Among the techniques presented, mass transfer of material to a sensor embedded in a surface is demonstrated to be useful in the further exploration of ultrasonic cleaning of high aspect ratio micropores. In addition the effect of micropore size on the cleaning efficacy is demonstrated. The design and performance of a new cleaning system reliant on the activation of bubbles within a free flowing stream is presented. This device utilised acoustic activation of bubbles within the stream and at a variety of substrates. Finally, a controlled bubble swarm is generated in the stream using electrolysis, and its effect on both acoustic output and cleaning performance are compared to the case when no bubbles are added. This will demonstrate the active role that the electrochemically generated bubble swarm can have in extending the spatial zone over which cleaning is achieved.  相似文献   
995.
An ambient aerosol concentration enrichment system coupled with ICP-MS for real-time monitoring of airborne radioactive particles is now under development. ICP-MS is very sensitive to sample introduction conditions, so it is necessary to develop an easy-use calibration method for on-line quantitative analysis in field application. In this paper, a calibration method using standard solution instead of monodisperse particles was established and validated preliminarily. First of all, four parameters for the method were determined experimentally, including: uptake flow rate and nebulisation efficiency of the Microconcentric nebuliser, nebulisation/transport efficiency of Aridus Desolvating Sample Introduction System, and Relative Sensitivity Factor between 159?Tb and 174?Yb. Then, monodisperse terbium nitrate particles were generated by a commercial Vibrating Orifice Aerosol Generator. Continuous aerosols of ytterbium nitrate droplets were nebulised from standard solution. They were mixed together, desolvated through the membrane dryer and introduced into ICP-MS for on-line analysis of terbium nitrate particles. The air sampled from nuclear environment was also introduced into ICP-MS to investigate the effect of flow rate on instrument responses. Finally, atom numbers of 159?Tb in discrete terbium nitrate particles were determined using the calibration method and compared to the calculated value. Results show that when air flow rate increase from 10?mL?min?1 to 100?mL?min?1, the ratio of 159?Tb ion count to 174?Yb ion intensity keeps constant although instrument sensitivity decreases by a factor of 25. The relative standard deviation of 159?Tb atom number measured is better than 18%. The discrepancy with the calculated value could be attributed to the over-estimation of atom number in the particles generated by VOAG because there was some liquid leakage in the VOAG.  相似文献   
996.
Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.  相似文献   
997.
Using a multi‐objective evolutionary algorithm (MOEA) and enhanced surrogate approximations, the present study demonstrates the numerical analysis and optimization of staggered‐dimple channels. Two surrogates, the response surface approximation (RSA) model and the Kriging (KRG) model, are applied in light of the surrogate fidelity of the approximate analysis. An enhanced Pareto‐optimal front is obtained by performing local resampling of the Pareto‐optimal front, which provides relatively more accurate Pareto‐optimal solutions in the design space for each surrogate model. Three dimensionless design variables are selected, which are related to geometric parameters, namely, the channel height, dimple print diameter, dimple spacing, and dimple depth. Two objective functions are selected that are related to the heat transfer and pressure loss, respectively. The objective‐function values are numerically evaluated through Reynolds‐averaged Navier–Stokes analysis at the design points that are selected through the Latin hypercube sampling method. Using these numerical simulations two surrogates, viz, the RSA and Kriging models, are constructed for each objective function and a hybrid MOEA is applied to obtain the Pareto‐optimal front. For the particular implementation of surrogate models, it is observed that Pareto‐optimal predictions of the RSA model are better than those of the KRG model, whereas the KRG model predicts equally well at the off‐Pareto‐region (region away from the Pareto‐optimal solutions), which is not the case with the RSA model. The local resampling of the Pareto‐optimal front increases the fidelity of the approximate solutions near the Pareto‐optimal region. The ratios of the channel height to the dimple print diameter and of the dimple print diameter to the dimple pitch are found to be more sensitive along the Pareto‐optimal front than the ratio of the dimple depth to the print diameter. The decrease of the ratio of the channel height to the dimple diameter and the increase of the ratio of the dimple print diameter to the pitch lead to greater heat transfer at the expense of the pressure loss, whereas the ratio of the dimple depth to the print diameter is rather insensitive to Pareto‐optimal solutions. Pareto‐optimal solutions at higher values of the Nusselt number are associated with higher values of the pressure loss due to the increased recirculation, mixing of fluid and vorticity generation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
998.
Simulation of nano‐scale channel flows using a coupled Navier–Stokes/Molecular Dynamics (MD) method is presented. The flow cases serve as examples of the application of a multi‐physics computational framework put forward in this work. The framework employs a set of (partially) overlapping sub‐domains in which different levels of physical modelling are used to describe the flow. This way, numerical simulations based on the Navier–Stokes equations can be extended to flows in which the continuum and/or Newtonian flow assumptions break down in regions of the domain, by locally increasing the level of detail in the model. Then, the use of multiple levels of physical modelling can reduce the overall computational cost for a given level of fidelity. The present work describes the structure of a parallel computational framework for such simulations, including details of a Navier–Stokes/MD coupling, the convergence behaviour of coupled simulations as well as the parallel implementation. For the cases considered here, micro‐scale MD problems are constructed to provide viscous stresses for the Navier–Stokes equations. The first problem is the planar Poiseuille flow, for which the viscous fluxes on each cell face in the finite‐volume discretization are evaluated using MD. The second example deals with fully developed three‐dimensional channel flow, with molecular level modelling of the shear stresses in a group of cells in the domain corners. An important aspect in using shear stresses evaluated with MD in Navier–Stokes simulations is the scatter in the data due to the sampling of a finite ensemble over a limited interval. In the coupled simulations, this prevents the convergence of the system in terms of the reduction of the norm of the residual vector of the finite‐volume discretization of the macro‐domain. Solutions to this problem are discussed in the present work, along with an analysis of the effect of number of realizations and sample duration. The averaging of the apparent viscosity for each cell face, i.e. the ratio of the shear stress predicted from MD and the imposed velocity gradient, over a number of macro‐scale time steps is shown to be a simple but effective method to reach a good level of convergence of the coupled system. Finally, the parallel efficiency of the developed method is demonstrated. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
999.
The direct injection of CO2 into the deep ocean is one of the feasible ways for the mitigation of the global warming, although there is a concern about its environmental impact near the injection point. To minimize its biological impact, it is necessary to make CO2 disperse as quickly as possible, and it is said that injection with a pipe towed by a moving ship is effective for this purpose. Because the injection ship moves over a spatial scale of O(102km), a mesoscale model is necessary to analyse the dispersion of CO2. At the same time, since it is important to investigate high CO2 concentration near the injection point, a small‐scale model is also required. Therefore, in this study, a numerical model was developed to analyse CO2 dispersion in the deep ocean by using a fixed mesoscale and a moving small‐scale grid systems, the latter of which is nested and moves in the former along the trajectory of the moving ship. To overcome the artificial diffusion of mass concentration at the interface of the two different grid systems and to keep its spatial accuracy almost the same as that in the small‐scale, a particle Laplacian method was adopted and newly modified for anisotropic diffusion in the ocean. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
1000.
N1-Hydroxy-2,4,5-trisubstituted imidazoles were synthesized starting from 1,2-diketones. The crystal structure of 4,5-dimethyl-2-(3-nitrophenyl)-1H-imidazol-1-ol has been determined. An unusual intermolecular hydrogen bonding through the association of water molecule has been reported. These imidazole derivatives can be thought of as the organic precursor for the synthesis of zinc oxide nano particles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号