首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   2篇
  国内免费   2篇
化学   19篇
晶体学   2篇
力学   13篇
数学   1篇
物理学   14篇
  2023年   2篇
  2022年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   2篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1987年   1篇
  1985年   1篇
  1980年   1篇
排序方式: 共有49条查询结果,搜索用时 108 毫秒
11.
Currently available heart valve prostheses have no growth potential, requiring children with heart valve diseases to endure multiple valve replacement surgeries with compounding risks. This study demonstrates the in vitro proof of concept of a biostable polymeric trileaflet valved conduit designed for surgical implantation and subsequent expansion via transcatheter balloon dilation to accommodate the growth of pediatric patients and delay or avoid repeated open-heart surgeries. The valved conduit is formed via dip molding using a polydimethylsiloxane-based polyurethane, a biocompatible material shown here to be capable of permanent stretching under mechanical loading. The valve leaflets are designed with an increased coaptation area to preserve valve competence at expanded diameters. Four 22 mm diameter valved conduits are tested in vitro for hydrodynamics, balloon dilated to new permanent diameters of 23.26 ± 0.38 mm, and then tested again. Upon further dilation, two valved conduits sustain leaflet tears, while the two surviving devices reach final diameters of 24.38 ± 0.19 mm. After each successful dilation, the valved conduits show increased effective orifice areas and decreased transvalvular pressure differentials while maintaining low regurgitation. These results demonstrate concept feasibility and motivate further development of a polymeric balloon-expandable device to replace valves in children and avoid reoperations.  相似文献   
12.
The basic process of re-ionization loss was studied.In the drift duct there are three processes leading to re-ionization loss:the collision of neutral beam particles with the molecules of background gas,similar collisions with released molecules from the inner wall of the drift duct and the ferret-collisions among particles with different energy of the neutral beam.Mathematical models have been developed and taking EAST-NBI parameters as an example,the re-ionization loss was obtained within these models.The result indicated that in the early stage of the neutral beam injector operation the released gas was quite abundant.The amount of re-ionization loss owing to the released gas can be as high as 60%.In the case of a long-time operation of the neutral beam injector,the total re-ionization loss decreases from 13.7% to 5.7%.Then the reionization loss originating mainly from the collisions between particles of the neutral beam and the background molecules is dominant,covering about 92% of the total re-ionization loss.The drift duct pressure was the decisive factor for neutral beam re-ionization loss.  相似文献   
13.
Peripheral nerve injury can considerably affect the daily life of affected people through reduced function and permanent deformation of the nerve. One of the conventional treatments used for the management of the disease is the application of autograft, which is recognized as a golden standard method; however, the process of gaining access to autograft has posed a significant challenge to its use. Nerve guidance channels (conduits), which are made in different methods, can act as an alternative therapy for patients that have undergone nerve injury; but, achieving these conduits has always been a major dilemma to be applied for patients with nerve injury. In this study, a novel conduit based on polymer blend nanocomposites of polyglycolic acid (PGA), collagen, and nanobioglass (NBG) were prepared by electrospinning technique and then compared with PGA/collagen and PGA conduits that were made in previous studies. Additionally, their various properties were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), contact angle, dynamic mechanical thermal analysis (DMTA), tensile strength, Fourier‐transform infrared (FTIR), and the porosity and degradation. The results showed that the mechanical, chemical, biocompatibility, and biodegradability properties of PGA/collagen/NBG conduits were more favorable in comparison with other materials. According to 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide (MTT) assay and 4′,6‐diamidino‐2‐phenylindole (DAPI) staining technique, nanofibrous electrospun PGA/collagen/NBG conduits are more suitable for cell adhesion and proliferation in comparison with either PGA or PGA/collagen conduits and can have potential for nerve regeneration.  相似文献   
14.
后置蜗壳斜流叶轮进出口流场的实验研究   总被引:1,自引:1,他引:0  
后置蜗壳斜流叶轮进出口流场的实验研究吴克启,于文华,张勇,胡晓,刘海波,赵联州(华中理工大学武汉430074)关键词:后置蜗壳,斜流叶轮,进出口流场,实验一、前言后置导叶翼形和圆弧形斜流风机的设计及应用【川\日益受到人们的关注并形成了性能良好的斜流风...  相似文献   
15.
16.
The exact solutions are obtained for unsteady unidirectional flows of a generalized second-order fluid through a rectangular conduit. The fractional calculus in the constitutive relationship of a non-Newtonian fluid is introduced. We construct the solutions by means of Fourier transform and the discrete Laplace transform of the sequential derivatives and the double finite Fourier transform. The solutions for Newtonian fluid between two infinite parallel plates appear as limiting cases of our solutions.  相似文献   
17.
Modeling process of the neutral beam re-ionization loss   总被引:1,自引:0,他引:1  
The basic process of re-ionization loss was studied. In the drift duct there are three processes leading to re-ionization loss: the collision of neutral beam particles with the molecules of background gas, similar collisions with released molecules from the inner wall of the drift duct and the ferret-collisions among particles with different energy of the neutral beam. Mathematical models have been developed and taking EAST-NBI parameters as an example, the re-ionization loss was obtained within these models. The result indicated that in the early stage of the neutral beam injector operation the released gas was quite abundant. The amount of re-ionization loss owing to the released gas can be as high as 60%. In the case of a long-time operation of the neutral beam injector, the total re-ionization loss decreases from 13.7% to 5.7%. Then the re-ionization loss originating mainly from the collisions between particles of the neutral beam and the background molecules is dominant, covering about 92% of the total re-ionization loss. The drift duct pressure was the decisive factor for neutral beam re-ionization loss.  相似文献   
18.
Conducting chitosan-g-polycaprolactone(CPC)/polypyrrole(PPy) conduits were fabricated for potential applications in nerve repair. Their mechanical and conducting properties as well as in vitro and in vivo degradation behaviors were mainly examined. It was found that some CPC/PPy conduits showed significantly stronger tensile and lateral compressive strength in the wet state, and notably higher conductivity in the overall tested PPy-load range, in comparison with chitosan/PPy conduits. After being consecutively exposed to PBS systems for various periods up to 10 weeks, the CPC/PPy conduits exhibited relatively slow degradation compared to chitosan/PPy conduits, and their degradation behaviors were measurably mediated by the composition of CPCs. The pH values of media corresponding to some selected CPC/PPy conduits did not significantly deviate from the initial pH value due to the buffering effect of chitosan component. After being implanted into rabbits for various periods, it was observed that the explanted chitosan/PPy conduits could only sustain a very low compressive load after 6-week degradation, and most of them were partially or fully collapsed after 8-week or longer degradation and showed very low conductivity. In contrast to these observations, some explanted CPC/PPy conduits were able to maintain enough strong mechanical strength in the wet state for the required period, and still showed acceptable conducting properties after 10-week in vivo degradation. Results suggested that some CPC/PPy conduits having proper compositional proportions could serve as desirable candidates to bridge nerve gaps in vivo.  相似文献   
19.
Peripheral nerve injury is a large‐scale problem and it is a great challenge to repair the long lesion in a thick nerve. The design of a multi‐tubular conduit with a honeycomb structure by mimicking the anatomy of a peripheral nerve for the potential repair of large defects in thick nerves has been reported. A bilayer mat of electrospun nanofibers is rolled up to form a single tube, with the inner and outer layers comprised aligned and random nanofibers, respectively. Seven such tubes are then assembled into a hexagonal array and encased within the lumen of a larger tube to form the multi‐tubular conduit. By introducing an adhesive to the regions between the tubes, the conduit is robust enough for handling during surgery. The seeded bone marrow stem cells (BMSCs) are able to proliferate in all the tubes with even circumferential and longitudinal distributions. Under chemical induction, the BMSCs are transdifferentiated into Schwann‐like cells in all the tubes. While the cellular version holds great promise for peripheral nerve repair, the multi‐tubular conduit can also be used to investigate the fundamental aspects involved in the development of peripheral nervous system and migration of cells.  相似文献   
20.
Simple expansion chambers, the simplest of the muffler configurations, have very limited practical application due to the presence of periodic troughs in the transmission loss spectrum which drastically lower the overall transmission loss of the muffler. Tuned extended inlet and outlet can be designed to nullify three-fourths of these troughs, making use of the plane wave theory. These cancellations would not occur unless one altered the geometric lengths for the extended tube in order to incorporate the effect of evanescent higher-order modes (multidimensional effect) through end corrections or lumped inertance approximation at the area discontinuities or junctions. End corrections of the extended inlet and outlet have been studied by several researchers. However the effect of wall thickness of the inlet/outlet duct on end correction has not been studied explicitly. This has significant effect on the tuning of an extended inlet/outlet expansion chamber. It is investigated here experimentally as well as numerically (through use of 3-D FEM software) for stationary medium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号