全文获取类型
收费全文 | 7594篇 |
免费 | 1035篇 |
国内免费 | 243篇 |
专业分类
化学 | 344篇 |
晶体学 | 74篇 |
力学 | 3120篇 |
综合类 | 102篇 |
数学 | 2032篇 |
物理学 | 3200篇 |
出版年
2024年 | 14篇 |
2023年 | 68篇 |
2022年 | 147篇 |
2021年 | 181篇 |
2020年 | 195篇 |
2019年 | 157篇 |
2018年 | 159篇 |
2017年 | 224篇 |
2016年 | 217篇 |
2015年 | 197篇 |
2014年 | 292篇 |
2013年 | 469篇 |
2012年 | 389篇 |
2011年 | 475篇 |
2010年 | 333篇 |
2009年 | 420篇 |
2008年 | 426篇 |
2007年 | 498篇 |
2006年 | 521篇 |
2005年 | 439篇 |
2004年 | 364篇 |
2003年 | 372篇 |
2002年 | 326篇 |
2001年 | 291篇 |
2000年 | 269篇 |
1999年 | 233篇 |
1998年 | 197篇 |
1997年 | 167篇 |
1996年 | 133篇 |
1995年 | 111篇 |
1994年 | 100篇 |
1993年 | 77篇 |
1992年 | 68篇 |
1991年 | 59篇 |
1990年 | 54篇 |
1989年 | 22篇 |
1988年 | 19篇 |
1987年 | 27篇 |
1986年 | 26篇 |
1985年 | 26篇 |
1984年 | 19篇 |
1983年 | 9篇 |
1982年 | 13篇 |
1981年 | 5篇 |
1980年 | 7篇 |
1979年 | 8篇 |
1978年 | 12篇 |
1977年 | 8篇 |
1976年 | 13篇 |
1957年 | 4篇 |
排序方式: 共有8872条查询结果,搜索用时 15 毫秒
21.
Modelling a complex geometry, such as ice roughness, plays a key role for the computational flow analysis over rough surfaces. This paper presents two enhancement ideas in modelling roughness geometry for local flow analysis over an aerodynamic surface. The first enhancement is use of the leading‐edge region of an airfoil as a perturbation to the parabola surface. The reasons for using a parabola as the base geometry are: it resembles the airfoil leading edge in the vicinity of its apex and it allows the use of a lower apparent Reynolds number. The second enhancement makes use of the Fourier analysis for modelling complex ice roughness on the leading edge of airfoils. This method of modelling provides an analytical expression, which describes the roughness geometry and the corresponding derivatives. The factors affecting the performance of the Fourier analysis were also investigated. It was shown that the number of sine–cosine terms and the number of control points are of importance. Finally, these enhancements are incorporated into an automated grid generation method over the airfoil ice accretion surface. The validations for both enhancements demonstrate that they can improve the current capability of grid generation and computational flow field analysis around airfoils with ice roughness. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
22.
We apply the least‐squares finite element method with adaptive grid to nonlinear time‐dependent PDEs with shocks. The least‐squares finite element method is also used in applying the deformation method to generate the adaptive moving grids. The effectiveness of this method is demonstrated by solving a Burgers' equation with shocks. Computational results on uniform grids and adaptive grids are compared for the purpose of evaluation. The results show that the adaptive grids can capture the shock more sharply with significantly less computational time. For moving shock, the adaptive grid moves correctly with the shock. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006 相似文献
23.
Hydrogels have been widely used in microelectromechanical systems (MEMS) and Bio‐MEMS devices. In this article, the equilibrium swelling/deswelling of the pH‐stimulus cylindrical hydrogel in the microchannel is studied and simulated by the meshless method. The multi‐field coupling model, called multi‐effect‐coupling pH‐stimulus (MECpH) model, is presented and used to describe the chemical field, electric field, and the mechanical field involved in the problem. The partial differential equations (PDEs) describing these three fields are either nonlinear or coupled together. This multi‐field coupling and high nonlinear characteristics produce difficulties for the conventional numerical methods (e.g., the finite element method or the finite difference method), so an alternative—meshless method is developed to discretize the PDEs, and the efficient iteration technique is adopted to solve the nonlinear problem. The computational results for the swelling/deswelling diameter of the hydrogel under the different pH values are firstly compared with experimental results, and they have a good agreement. The influences of other parameters on the mechanical properties of the hydrogel are also investigated in detail. It is shown that the multi‐field coupling model and the developed meshless method are efficient, stable, and accurate for simulation of the properties of the stimuli‐sensitive hydrogel. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 326–337, 2006 相似文献
24.
We present the implementation and demonstration of the Chebyshev pseudo-spectral method coupled with an adaptive mesh method for performing fast and highly accurate electrophoresis simulations. The Chebyshev pseudo-spectral method offers higher numerical accuracy than all other finite difference methods and is applicable for simulating all electrophoresis techniques in channels with open or closed boundaries. To improve the computational efficiency, we use a novel moving mesh scheme that clusters the grid points in the regions with poor numerical resolution. We demonstrate the application of the Chebyshev pseudo-spectral method on a moving mesh for simulating nonlinear electrophoretic processes through examples of isotachophoresis (ITP), isoelectric focusing (IEF), and electromigration-dispersion in capillary zone electrophoresis (CZE) at current densities as high as 1000 A/m. We also show the efficacy of our moving mesh method over existing methods that cluster the grid points in the regions with large concentration gradients. We have integrated the adaptive Chebyshev pseudo-spectral method in the open-source SPYCE simulator and verified its implementation with other electrophoresis simulators. 相似文献
25.
随着光伏行业的快速发展, 对硅单晶的品质和长晶装备的稳定性的要求也不断提高。直拉法是生产硅单晶的主要方法,通过提高单晶炉副室的高度以扩大单晶硅的生产规模。由于副室高度的大幅增加,且单晶炉提拉头质心相对于旋转轴心有一定距离,对单晶炉整体稳定性有较大影响,从而降低了单晶硅的生产质量。针对此问题,对单晶炉建立可靠的力学分析模型,采用数值仿真方法,对单晶炉整体进行动力学响应分析,计算得到副室高度增加后的单晶炉工作时中钨丝绳下端晶棒的运动规律以及最大摆动幅度,为改进设计提供依据。数值仿真分析表明提高单晶炉副室高度后,提拉头较大的质心偏心是单晶炉提拉系统发生摆动的主要原因。在此基础上提出在提拉头上添加质心调节装置,通过控制系统调节可保证提拉头质心位置在旋转轴线上以降低提拉系统的摆动。 相似文献
26.
Physically unacceptable chaotic numerical solutions of nonlinear circuits and systems are discussed in this paper. First, as an introduction, a simple example of a wrong choice of a numerical solver to deal with a second-order linear ordinary differential equation is presented. Then, the main result follows with the analysis of an ill-designed numerical approach to solve and analyze a particular nonlinear memristive circuit. The obtained trajectory of the numerical solution is unphysical (not acceptable), as it violates the presence of an invariant plane in the continuous systems. Such a poor outcome is then turned around, as we look at the unphysical numerical solution as a source of strong chaotic sequences. The 0–1 test for chaos and bifurcation diagrams are applied to prove that the unacceptable (from the continuous system point of view) numerical solutions are, in fact, useful chaotic sequences with possible applications in cryptography and the secure transmission of data. 相似文献
27.
We give here an overview of the orbital-free density functional theory that is used for modeling atoms and molecules.We review typical approximations to the kinetic energy,exchange-correlation corrections to the kinetic and Hartree energies, and constructions of the pseudopotentials.We discuss numerical discretizations for the orbital-free methods and include several numerical results for illustrations. 相似文献
28.
The energy loss of the multi-stage centrifugal pump was investigated by numerical analysis using the entropy generation method with the RNG k-ε turbulence model. Entropy generation due to time-averaged motion and velocity fluctuation was mainly considered. It was found that the entropy generation of guide vanes and impellers account for 71.2% and 23.3% of the total entropy generation under the designed flow condition. The guide vanes are the main hydraulic loss domains and their entropy generation is about 9 W/K, followed by impellers. There are vortices at the tongue of the guide vane inlet as well as flow separations in the impellers, which lead to entropy generation. The fluid impacts the outer surface of the guide vanes, resulting in the increase in entropy generation. There are refluxes near the guide vane tongues which also increase the entropy generation of this part. The entropy generation distribution of the guide vanes and impellers was investigated, which found that the positive guide vane has more entropy generation compared with the reverse guide. The entropy generation of the blade suction surface is higher compared with the pressure surface. This study indicated that the entropy generation method has distinct advantages in the assessment of hydraulic loss. 相似文献
29.
30.
The stability of the rolling motion of near space hypersonic vehicles with rudder control is studied using method of qualitative analysis of nonlinear differential equations, and the stability criteria of the deflected rolling motions are improved. The outcomes can serve as the basis for further study regarding the influence of pitching and lateral motion on the stability of rolling motion. To validate the theoretical results, numerical simulations were done for the rolling motion of two hypersonic vehicles with typical configurations. Also, wind tunnel experiments for four aircraft models with typical configurations have been done. The results show that: 1) there exist two dynamic patterns of the rolling motion under statically stable condition. The first one is point attractor, for which the motion of aircraft returns to the original state. The second is periodic attractor, for which the aircraft rolls periodically. 2) Under statically unstable condition, there exist three dynamic patterns of rolling motion, namely, the point attractor, periodic attractor around deflected state of rolling motion, and double periodic attractors or chaotic attractors. 相似文献