首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7195篇
  免费   1054篇
  国内免费   255篇
化学   375篇
晶体学   73篇
力学   2915篇
综合类   84篇
数学   1983篇
物理学   3074篇
  2024年   9篇
  2023年   57篇
  2022年   129篇
  2021年   163篇
  2020年   203篇
  2019年   163篇
  2018年   171篇
  2017年   212篇
  2016年   206篇
  2015年   202篇
  2014年   266篇
  2013年   466篇
  2012年   364篇
  2011年   433篇
  2010年   342篇
  2009年   411篇
  2008年   429篇
  2007年   469篇
  2006年   502篇
  2005年   427篇
  2004年   337篇
  2003年   343篇
  2002年   305篇
  2001年   277篇
  2000年   246篇
  1999年   207篇
  1998年   182篇
  1997年   157篇
  1996年   129篇
  1995年   109篇
  1994年   93篇
  1993年   74篇
  1992年   67篇
  1991年   51篇
  1990年   56篇
  1989年   30篇
  1988年   19篇
  1987年   28篇
  1986年   24篇
  1985年   26篇
  1984年   20篇
  1983年   10篇
  1982年   14篇
  1981年   7篇
  1980年   7篇
  1979年   10篇
  1978年   13篇
  1977年   8篇
  1976年   13篇
  1957年   5篇
排序方式: 共有8504条查询结果,搜索用时 281 毫秒
81.
Here we describe analytical and numerical modifications that extend the Differential Reduced Ejector/ mixer Analysis (DREA), a combined analytical/numerical, multiple species ejector/mixing code developed for preliminary design applications, to apply to periodic unsteady flow. An unsteady periodic flow modelling capability opens a range of pertinent simulation problems including pulse detonation engines (PDE), internal combustion engine ICE applications, mixing enhancement and more fundamental fluid dynamic unsteadiness, e.g. fan instability/vortex shedding problems. Although mapping between steady and periodic forms for a scalar equation is a classical problem in applied mathematics, we will show that extension to systems of equations and, moreover, problems with complex initial conditions are more challenging. Additionally, the inherent large gradient initial condition singularities that are characteristic of mixing flows and that have greatly influenced the DREA code formulation, place considerable limitations on the use of numerical solution methods. Fortunately, using the combined analytical–numerical form of the DREA formulation, a successful formulation is developed and described. Comparison of this method with experimental measurements for jet flows with excitation shows reasonable agreement with the simulation. Other flow fields are presented to demonstrate the capabilities of the model. As such, we demonstrate that unsteady periodic effects can be included within the simple, efficient, coarse grid DREA implementation that has been the original intent of the DREA development effort, namely, to provide a viable tool where more complex and expensive models are inappropriate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
82.
何玉明 《光学学报》1994,14(11):187-1191
分析了数字剪切散斑干涉条纹图的形成理论,并获得了条纹亮度与摄象机数值孔径等参数的精确关系式,从理论分析和实验验证均得出在采用小的摄象机数值孔径和3mW He-Ne激光器的情况下,仍可获得比较满意的数字剪切散斑干涉条纹图,理论工作及其结论对于进行数字剪切散斑干涉实验的最佳参数选择具有指导作用。  相似文献   
83.
大规模界约束优化的子空间截断牛顿法   总被引:2,自引:2,他引:0       下载免费PDF全文
给出了大规模界约束优化的一个子空间截断牛顿法。利用截断牛顿法修正非有效约束所对应的变量,用投影梯度法修正有效约束所对应的变量,文中证明了方法的整体收敛性,并对方法进行了数值试验,且与子空间有限内存拟牛顿法进行了数值比较。  相似文献   
84.
Unsteady flow dynamics in doubly constricted 3D vessels have been investigated under pulsatile flow conditions for a full cycle of period T. The coupled non‐linear partial differential equations governing the mass and momentum of a viscous incompressible fluid has been numerically analyzed by a time accurate Finite Volume Scheme in an implicit Euler time marching setting. Roe's flux difference splitting of non‐linear terms and the pseudo‐compressibility technique employed in the current numerical scheme makes it robust both in space and time. Computational experiments are carried out to assess the influence of Reynolds' number and the spacing between two mild constrictions on the pressure drop across the constrictions. The study reveals that the pressure drop across a series of mild constrictions can get physiologically critical and is also found to be sensitive both to the spacing between the constrictions and the oscillatory nature of the inflow profile. The flow separation zone on the downstream constriction is seen to detach from the diverging wall of the constriction leading to vortex shedding with 3D features earlier than that on the wall in the spacing between the two constrictions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   
85.
利用数量化方法,数字特征法,W ilcoxon顺序和检验法以及试卷分析的各种方法(试题难度,区分度,信度,效度等),定量地解决了影响学生成绩的主要因素,并引入全面管理方法,明显地改善了学生成绩,学生综合能力明显加强.  相似文献   
86.
采用基于识别的分割方法进行手写数字串分割.在识别的过程中,运用反例样本估计分类器参数,实验数据表明,这种运用反例样本训练的分类器与没有经过反例样本训练的分类器相比,将提高拒识率到19%左右,从而保证了较高的识别率,验证了只有经过反例训练的分类器的输出结果才是可信赖的.  相似文献   
87.
A numerical model is presented to calculate V(z) and V(x, z) curves for a line focus acoustic microscope and a specimen containing a subsurface crack. In this model, a Gaussian beam which is tracked through the lens into the coupling fluid and into the specimen, interacts with the crack. The numerical approach is based on the solution of singular integral equations by the boundary element method. The system of singular integral equations follows from the conditions at the interface of the coupling fluid and the specimen and on the faces of the crack. An electromechanical reciprocity relation is used to express the voltage at the terminals of the microscope's transducer in terms of the calculated incident and back-scattered fields. V(z) and V(x, z) curves are presented for various locations and orientations of the crack. The characteristic features of the V(z) and particularly the V(x, z) curves, as they relate to crack configuration, are discussed in some detail.  相似文献   
88.
The total drag force on the surface of a body, which is the sum of the form drag and the skin friction drag in a 2D domain, is numerically evaluated by integrating the energy dissipation rate in the whole domain for an incompressible Stokes fluid. The finite element method is used to calculate both the energy dissipation rate in the whole domain as well as the drag on the boundary of the body. The evaluation of the drag and the energy dissipation rate are post-processing operations which are carried out after the velocity field and the pressure field for the flow over a particular profile have been obtained. The results obtained for the flow over three different but constant area profiles—a circle, an ellipse and a cross-section of a prolate spheroid—with uniform inlet velocity are presented and it is shown that the total drag force times the velocity is equal to the total energy dissipation rate in the entire finite flow domain. Hence, by calculating the energy dissipation rate in the domain with unit velocity specified at the far-field boundary enclosing the domain, the drag force on the boundary of the body can be obtained.  相似文献   
89.
Higher-order implicit numerical methods which are suitable for stiff stochastic differential equations are proposed. These are based on a stochastic Taylor expansion and converge strongly to the corresponding solution of the stochastic differential equation as the time step size converges to zero. The regions of absolute stability of these implicit and related explicit methods are also examined.  相似文献   
90.
The indirect boundary element method was used to study the hydrodynamics of oscillatory viscous flow over prolate and oblate spheroids, and over hemispheroidal bodies hinged to a plate. Analytic techniques, such as spheroidal coordinates, method of images, and series representations, were used to make the numerical methods more efficient. A novel method for computing the hydrodynamic torque was used, since for oscillatory flow the torque cannot be computed directly from the weightings. Instead, a Green's function for torque was derived to compute the torque indirectly from the weightings. For full spheroids, the method was checked by comparing the results to exact solutions at low and high frequencies, and to results computed using the singularity method. For hemispheroids hinged to a plate, the method for low frequencies was checked by comparing the results to previous results, and to exact solutions at high frequencies. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号