首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   11篇
  国内免费   19篇
化学   92篇
晶体学   2篇
力学   132篇
综合类   2篇
数学   5篇
物理学   256篇
  2023年   5篇
  2022年   14篇
  2021年   10篇
  2020年   5篇
  2019年   7篇
  2018年   11篇
  2017年   7篇
  2016年   3篇
  2015年   13篇
  2014年   8篇
  2013年   35篇
  2012年   16篇
  2011年   47篇
  2010年   16篇
  2009年   26篇
  2008年   21篇
  2007年   25篇
  2006年   30篇
  2005年   18篇
  2004年   23篇
  2003年   21篇
  2002年   23篇
  2001年   10篇
  2000年   18篇
  1999年   7篇
  1998年   10篇
  1997年   17篇
  1996年   3篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
排序方式: 共有489条查询结果,搜索用时 15 毫秒
401.
This paper reports an experimental investigation of the heat transfer performance of the new low-GWP refrigerants, R1234yf and R1234ze(E), during flow boiling heat transfer inside a horizontal high porosity copper foam with 5 Pores Per Inch (PPI). Metal foams are a class of cellular structured materials consisting of a stochastic distribution of interconnected pores; these materials have been proposed as effective solutions for heat transfer enhancement during both single and two-phase heat transfer. R1234yf and R1234ze(E) refrigerants are appealing alternatives of the more traditional R134a by virtue of their negligible values of GWP and normal boiling temperatures close to that of R134a, which make them suitable solution in several different applications, such as: refrigeration and air conditioning and electronic thermal management. This work compares the two-phase heat transfer behaviour of these new HFO refrigerants, studying the boiling process inside a porous medium and permitting to understand their effective heat transfer capabilities. The experimental measurements were carried out by imposing three different heat fluxes: 50, 75, and 100 kW m−2, at a constant saturation temperature of 30 °C; the refrigerant mass velocity was varied between 50 and 200 kg m−2 s−1, whilst the mean vapour quality varied from 0.2 to 0.95. The two-phase heat transfer and pressure drop performance of the two new HFO refrigerants is compared against that of the more traditional R134a.  相似文献   
402.
This part of the paper presents the current experimental flow boiling heat transfer and CHF data acquired for R134a, R236fa and R245fa in single, horizontal channels of 1.03, 2.20 and 3.04 mm diameters over a range of experimental conditions. The aim of this study is to investigate the effects of channel confinement, heat flux, flow pattern, saturation temperature, subcooling and working fluid properties on the two-phase heat transfer and CHF. Experimentally, it was observed that the flow boiling heat transfer coefficients are a significant function of the type of two-phase flow pattern. Furthermore, the monotonically increasing heat transfer coefficients at higher vapor qualities, corresponding to annular flow, signifies convective boiling as the dominant heat transfer mechanism in these small scale channels. The decreasing heat transfer trend at low vapor qualities in the slug flow (coalescing bubble dominated regime) was indicative of thin film evaporation with intermittent dry patch formation and rewetting at these conditions. The coalescing bubble flow heat transfer data were well predicted by the three-zone model when setting the dryout thickness to the measured surface roughness, indicating for the first time a roughness effect on the flow boiling heat transfer coefficient in this regime. The CHF data acquired during the experimental campaign indicated the influence of saturation temperature, mass velocity, channel confinement and fluid properties on CHF but no influence of inlet subcooling for the conditions tested. When globally comparing the CHF values for R134a in the 0.51-3.04 mm diameter channels, a peak in CHF peak was observed lying in between the 0.79 (Co ≈ 0.99) and 1.03 (Co ≈ 0.78) mm channels. A new CHF correlation has been proposed involving the confinement number, Co that is able to predict CHF for R134a, R236fa and R245fa in single-circular channels, rectangular multichannels and split flow rectangular multichannels. In summary, the present flow boiling and CHF trends point to a macro-to-microscale transition as indicated by the results presented in Ong and Thome (2011) [1].  相似文献   
403.
本文利用分形几何描述加热面的表面粗糙度,通过定义的“佛腾维数”,建立了以分形维数表示的地沸腾活性气化核心密度与加热面特性之间的关系式,其预测结果与水-不锈钢组合池沸腾实验结果吻合较好.  相似文献   
404.
The study considers algebraic turbulence modeling in adiabatic and evaporating annular two-phase flow, focusing in particular on momentum and heat transfer (so-called ‘convective boiling’) through the annular liquid film. In contrast with single-phase wall-bounded flow theory, shear-driven annular liquid films are assumed here to behave as fluid-bounded flows, mostly interacting with the shearing gas-entrained droplets core flow. Besides providing velocity and temperature profiles through the liquid film, the turbulence model proposed here predicts key parameters such as the average liquid film thickness, the void fraction and the convective boiling heat transfer coefficient with accuracies comparable or better than those of leading design correlations. This turbulence model is part of a unified annular flow modeling suite that includes methods to predict the entrained liquid fraction and the axial frictional pressure gradient. The underlying heat transfer database covers nine fluids (water, two hydrocarbons and six refrigerants) for vertical and horizontal tubes of 1.03-14.4 mm diameter and pressures of 0.1-7.2 MPa. Importantly, this study shows that there appears to be no macro-to-microscale transition when it comes to annular flow. Simply better physical modeling is required to span this range.  相似文献   
405.
406.
In this article, the electrohydrodynamic (EHD) effects on nucleate boiling are studied by developing a numerical modelling of EHD effect on bubble deformation in pseudo-nucleate boiling conditions. The volume of fluid (VOF) method is employed to track the interface between the gas–liquid two phases; the user-defined code is written and added to the commercial software FLUENT to solve the electric field and the corresponding electric body force. On this basis, the model is applied to study the EHD effects on heat transfer and fluid flows. An initial air bubble surrounded by liquid CCl4 and attached to a horizontal superheated wall under the action of electric field is studied. The results of the EHD effect on bubble shape evolution are compared with those of available experiments showing good agreement. The mechanism of EHD enhancement of heat transfer and the EHD induced phenomena including bubble elongation and detachment are analyzed in detail.  相似文献   
407.
An experimental investigation of inverted annular film boiling heat transfer has been performed for vertical up-flow in a round tube. The experiments used R-134a coolant and covered a pressure range of 640–2390 kPa (water equivalent range: 4000–14,000 kPa) and a mass flux range of 500–4000 kg m−2 s−1 (water equivalent range: 700–5700 kg m−2 s−1). The inlet qualities of the tests ranged from −0.75 to −0.03. The hot-patch technique was used to obtain the subcooled film boiling measurements. It was found that the heat transfer vs. quality curve can be divided into four different regions, each characterized by a different mechanisms and trends. These regions are dependent on pressure, mass flux and local quality. A detailed examination of the parametric trends of the heat transfer coefficient with respect to mass flux, inlet quality, heat flux and pressure was performed; reasonably good agreement between observed trends and those reported in the literature were noted.  相似文献   
408.
《Mendeleev Communications》2023,33(3):390-392
Compared to ambient conditions, radiolysis of boiling acetylacetone almost halved the yield of C–OH bond cleavage and doubled the redistribution of H atoms  相似文献   
409.
本文以光滑石墨膜作为加热表面,在标准大气压下以去离子水为工质进行了饱和池式沸腾实验。实验研究表明,在热流密度达到1.83 MW/m^2时,石墨膜发生膨胀并使其表面局部破裂,随着热流密度的进一步升高,破裂的面积逐渐扩大,石墨膜的电阻呈现阶跃式升高。在2.40 MW/m^2的热流密度下,石墨膜表面全部破裂,此后随着热流密度增加,电阻上升幅度变小,最终,在热流密度达到3.17 MW/m^2时,石墨膜发生烧毁。可见,石墨膜通过膨胀破裂的方式能自适应地强化沸腾传热临界热流密度,强化比例达到73%。同时,通过高速摄像机的观察发现,在相同热流密度条件下,与光滑表面相比,膨胀表面的气化核心数增多,气泡脱离直径变小,气泡脱离频率变大。  相似文献   
410.
Experiments of pool boiling of HFE7000 on a flat plate have been performed in both earth and microgravity conditions in parabolic flights. The effects of pressure, subcooling and gravity are studied. Experiments show that in fully developed boiling regime gravity and subcooling have a weak influence on heat transfer. By identifying mechanisms that control heat transfer, the weak influences of gravity and subcooling are explained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号