首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12939篇
  免费   1233篇
  国内免费   970篇
化学   818篇
晶体学   48篇
力学   3087篇
综合类   186篇
数学   8731篇
物理学   2272篇
  2024年   21篇
  2023年   141篇
  2022年   157篇
  2021年   173篇
  2020年   325篇
  2019年   324篇
  2018年   335篇
  2017年   365篇
  2016年   418篇
  2015年   361篇
  2014年   564篇
  2013年   1106篇
  2012年   552篇
  2011年   719篇
  2010年   580篇
  2009年   759篇
  2008年   826篇
  2007年   815篇
  2006年   741篇
  2005年   668篇
  2004年   619篇
  2003年   582篇
  2002年   527篇
  2001年   427篇
  2000年   448篇
  1999年   375篇
  1998年   362篇
  1997年   294篇
  1996年   245篇
  1995年   165篇
  1994年   169篇
  1993年   129篇
  1992年   142篇
  1991年   118篇
  1990年   94篇
  1989年   62篇
  1988年   43篇
  1987年   37篇
  1986年   35篇
  1985年   47篇
  1984年   65篇
  1983年   35篇
  1982年   48篇
  1981年   32篇
  1980年   23篇
  1979年   18篇
  1978年   16篇
  1977年   7篇
  1973年   8篇
  1957年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Highly liquid repellent surfaces have been obtained by the combination of roughness and hydrophobicity. Studies have reported that the flow over such surfaces exhibits larger boundary slip as compared to the smooth hydrophobic surfaces. However, the surface roughness can also lead to apparent slip. Thus, the effect of the two factors, that is, wettability and roughness, needs to be segregated. In this study, we have measured the slippage of water on rough hydrophilic and hydrophobic surfaces using colloidal probe atomic force microscopy technique (CP‐AFM). Results showed that the effect of surface roughness on the measured slip is dominant over that of wettability. It was also found that slip on surfaces with sparsely distributed asperities is highly local and measurements on various locations give dissimilar results. The results suggested that the main reason of the larger slip, on rough hydrophobic surfaces, is likely to be the roughness and not the hydrophobicity. Moreover, it was also found that the slip does not vary considerably with the increase or decrease in the shear rate. Most likely, this kind of slip phenomena is caused by the apparent decrease of the drag force, because the nanoasperities on the surface restrict the probe from reaching the surface properly. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
192.
移动加热器法(THM)生长碲锌镉晶体时,界面稳定性对晶体生长的质量有很大影响。本文基于多物理场有限元仿真软件Comsol建立了THM生长碲锌镉晶体的数值模拟模型,讨论了Te边界层与组分过冷区之间的关系,对不同生长阶段的物理场、Te边界层与组分过冷区进行仿真研究,最后讨论了微重力对物理场分布的影响,并对比了微重力与正常重力下的生长界面形貌。模拟结果表明,Te边界层与组分过冷区的分布趋势是一致的,在不同生长阶段,流场中次生涡旋的位置会发生移动,从而导致生长界面的形貌随着生长的进行发生变化,同时微重力条件下形成的生长界面形貌最有利于单晶生长。因此,在晶体生长的中前期,对次生涡旋位置的控制和对组分过冷的削弱,是THM生长高质量晶体的有效方案。  相似文献   
193.
The surface tension driven‐flow in BaB2O4 (BBO) melt‐solution is visualized by differential interference microscope coupled with Schlieren technique, and the streamline of the steady thermocapillary convection is found to be in form of an axially symmetric pattern. Based on the observation of BBO crystal rotation caused by the convective vortex, the widths of interfacial concentration, heat and momentum boundary layer are calculated. The effect of thermocapillary convection on boundary layer thickness is also investigated. Results show that the width of boundary layer decreases linearly with the increasing of dimensionless Marangoni number. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
194.
利用等离子增强原子层沉积技术(PEALD)在c面蓝宝石衬底上制备了氧化镓(Ga2O3)薄膜,研究了退火气氛(v(N2)∶v(O2)=1∶1(体积比)、空气和N2)及退火时间对Ga2O3薄膜晶体结构、表面形貌和光学性质的影响。研究结果表明,退火前的氧化镓处于亚稳态,不同退火气氛下退火后晶体结构发生明显改变,而且退火气氛中N2比例增加有利于Ga2O3重结晶。在N2气氛下退火达到30 min,薄膜结构已由亚稳态转变成择优取向的β-Ga2O3。而且表面形貌分析表明,退火30 min后表面形貌开始趋于稳定,表面晶粒密度不再增加。另外实验样品在 400~800 nm的平均透射率几乎是100%,且光吸收边陡峭。采用N2气氛退火,对于富氧环境下沉积的Ga2O3更利于薄膜表面原子迁移,以及择优取向Ga2O3重结晶。  相似文献   
195.
In this work, an approach is proposed for solving the 3D shallow water equations with embedded boundaries that are not aligned with the underlying horizontal Cartesian grid. A hybrid cut‐cell/ghost‐cell method is used together with a direction‐splitting implicit solver: Ghost cells are used for the momentum equations in order to prescribe the correct boundary condition at the immersed boundary, while cut cells are used in the continuity equation in order to conserve mass. The resulting scheme is robust, does not suffer any time step limitation for small cut cells, and conserves fluid mass up to machine precision. Moreover, the solver displays a second‐order spatial accuracy, both globally and locally. Comparisons with analytical solutions and reference numerical solutions on curvilinear grids confirm the quality of the method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
196.
Predicting unsteady flows and aerodynamic forces for large displacement motion of microstructures requires transient solution of Boltzmann equation with moving boundaries. For the inclusion of moving complex boundaries for these problems, three immersed boundary method flux formulations (interpolation, relaxation, and interrelaxation) are presented. These formulations are implemented in a 2‐D finite volume method solver for ellipsoidal‐statistical (ES)‐Bhatnagar‐Gross‐Krook (BGK) equations using unstructured meshes. For the verification, a transient analytical solution for free molecular 1‐D flow is derived, and results are compared with the immersed boundary (IB)‐ES‐BGK methods. In 2‐D, methods are verified with the conformal, non‐moving finite volume method, and it is shown that the interrelaxation flux formulation gives an error less than the interpolation and relaxation methods for a given mesh size. Furthermore, formulations applied to a thermally induced flow for a heated beam near a cold substrate show that interrelaxation formulation gives more accurate solution in terms of heat flux. As a 2‐D unsteady application, IB/ES‐BGK methods are used to determine flow properties and damping forces for impulsive motion of microbeam due to high inertial forces. IB/ES‐BGK methods are compared with Navier–Stokes solution at low Knudsen numbers, and it is shown that velocity slip in the transitional rarefied regime reduces the unsteady damping force. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
197.
A method is described for the quantification of the sp2, sp3 and intermediate hybridizations in several carbon (C) material samples. Electron energy-loss near-edge spectra were acquired using fast electrons (120 keV) in an electron microscope in nanobeam configuration under the so-called ”magic-angle” condition, and were analysed to extract the sp2 and sp3 fractions, and identify the possible mixed sp2+ε hybridizations. The method consists in projecting the unknown spectra on a basis made up of pure sp2 and sp3 spectra, obtained under the same experimental conditions from graphite and diamond crystals, respectively. The residual spectra contain information about the intermediate hybridizations sp2+ε occurring in the samples. The method was successfully tested on “ab initio” numerically generated spectra relative to amorphous C materials. Finally, it was applied to actual C amorphous and pyrolytic samples, and results were compared to those obtained by the most commonly used, conventional ”three-Gaussian” method. The combined application of electron diffraction and spectroscopy, in the nanobeam configuration, yielded useful information about the atomic and electronic structure from very small volumes of the unknown C material.  相似文献   
198.
Numerical modeling of multiphase flow generally requires a special procedure at the solid wall in order to be consistent with Young's law for static contact angles. The standard approach in the lattice Boltzmann method, which consists of imposing fictive densities at the solid lattice sites, is shown to be deficient for this task. Indeed, fictive mass transfer along the boundary could happen and potentially spoil the numerical results. In particular, when the contact angle is less than 90 degrees, the deficiencies of the standard model are major. Various videos that demonstrate this behavior are provided (Supporting Information). A new approach is proposed and consists of directly imposing the contact angle at the boundaries in much the same way as Dirichlet boundary conditions are generally imposed. The proposed method is able to retrieve analytical solutions for static contact angles in the case of straight and curved boundaries even when variable density and viscosity ratios between the phases are considered. Although the proposed wetting boundary condition is shown to significantly improve the numerical results for one particular class of lattice Boltzmann model, it is believed that other lattice Boltzmann multiphase schemes could also benefit from the underlying ideas of the proposed method. The proposed algorithm is two‐dimensional, and the D2Q9 lattice is used. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
199.
Titania (TiO2) photocatalysts, each embedded with one of six metals (Ag, Ce, Co, Fe, Mg, and Mn), were prepared using a simplified ultrasonic process. The characteristics of the prepared metal-embedded TiO2 (metal–TiO2) were determined using transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction spectroscopy, photoluminescence emission spectroscopy, UV–visible spectroscopy, and nitrogen adsorption–desorption. Except for Co–TiO2, the metal–TiO2 photocatalysts showed improved performance for the decomposition of gaseous benzene and toluene, which are two of the most problematic indoor air pollutants that can cause a variety of adverse health symptoms, under daylight lamp irradiation. Photocatalytic activity was greatest for the Mg–TiO2 sample, followed by, in order, the Ag–TiO2, Ce–TiO2, Fe–TiO2, Mn–TiO2, unmodified TiO2, and Co–TiO2 samples. Although Mg–TiO2 showed the least redshift in its light absorption and the highest electron–hole recombination rate among the metal–TiO2 photocatalysts, it yielded the highest photocatalytic activity, likely because of its increased adsorption capacity and anatase composition. The degradation of benzene and toluene over Mg–TiO2 improved as ultrasound treatment amplitude increased from 20 to 37 μm, then decreased gradually as amplitude was further increased to 49 μm. Degradation efficiency also improved as ultrasound operation time increased from 30 to 60 min, then decreased gradually as amplitude was further increased to 90 min. Overall, this process could be utilized to prepare metal–TiO2 photocatalysts with improved performance for the decomposition of gas phase pollutants under daylight lamp irradiation.  相似文献   
200.
分析得到了横向电场分量和磁场分量所满足的耦合方程,对于介质折射率的不连续处,采用严格的边界条件来处理。基于全矢量模型,使用有限差分法编写了复模式的求解器,并将其应用于Bragg光纤的模式求解和分析。绘制出了Bragg光纤模式谱图,分类分析了在无限包层情况下Bragg光纤模式的基本特性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号