全文获取类型
收费全文 | 9694篇 |
免费 | 1442篇 |
国内免费 | 841篇 |
专业分类
化学 | 9527篇 |
晶体学 | 71篇 |
力学 | 88篇 |
综合类 | 25篇 |
数学 | 9篇 |
物理学 | 2257篇 |
出版年
2024年 | 23篇 |
2023年 | 166篇 |
2022年 | 450篇 |
2021年 | 501篇 |
2020年 | 672篇 |
2019年 | 531篇 |
2018年 | 468篇 |
2017年 | 540篇 |
2016年 | 742篇 |
2015年 | 720篇 |
2014年 | 802篇 |
2013年 | 924篇 |
2012年 | 830篇 |
2011年 | 819篇 |
2010年 | 634篇 |
2009年 | 624篇 |
2008年 | 538篇 |
2007年 | 489篇 |
2006年 | 378篇 |
2005年 | 298篇 |
2004年 | 194篇 |
2003年 | 179篇 |
2002年 | 132篇 |
2001年 | 114篇 |
2000年 | 75篇 |
1999年 | 57篇 |
1998年 | 28篇 |
1997年 | 15篇 |
1996年 | 8篇 |
1995年 | 8篇 |
1994年 | 2篇 |
1992年 | 1篇 |
1991年 | 2篇 |
1990年 | 7篇 |
1985年 | 2篇 |
1983年 | 3篇 |
1979年 | 1篇 |
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
241.
Christian J. -F. Dupraz Patrick Nickels Udo Beierlein Wendy U. Huynh Friedrich C. Simmel 《Superlattices and Microstructures》2003,33(5-6):369
This paper provides an overview of recent research developments in the field of nanoelectronics with organic materials such as carbon nanotubes and DNA-templated nanowires. Carbon nanotubes and gold electrodes are chemically functionalized in order to contact carbon nanotubes by self-assembly. The transport properties of these nanotubes are dominated by charging effects and display clear Coulomb blockade behaviour. A different approach towards nanoscale electronics is based on the molecular recognition properties of biomolecules such as DNA. As an example, DNA is stretched between electrodes using a molecular combing technique. A two-step metallization procedure leads to the formation of highly conductive gold nanowires. 相似文献
242.
E. S. Dy H. Kasai 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2007,41(2):241-245
We study the interaction between tin(II) porphyrin (SnPor) with platinum and
non-precious Group 8B metals (iron, cobalt and nickel) by density functional
theory and discuss the electronic properties of the resulting products. We
also model the interaction of the resulting compounds with water where
applicable. Our studies indicate that, SnPor-Ni possesses electronic
properties similar to SnPor-Pt, suggesting that it may possess similar
photocatalytic properties for reduction reactions, such as converting water
to hydrogen gas. 相似文献
243.
W.T. Wallace R.L. Whetten 《The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics》2001,16(1):123-126
Smaller gold-cluster anions, typified by Au
7
-
, adsorb multiple CO molecules in a high-pressure, room-temperature flow-reactor, tending toward previously unknown saturation
compositions, Au7(CO)
4
-
. The weakness of the gold-carbonyl adsorption bond is evidenced indirectly by the high CO partial pressure required and more
directly by the high probability of fragmentation in the field-free flight region of the reflectron-type time-of-flight mass
spectrometer. The analysis of this metastability reveals that the actual distribution fN,M of products Au7(CO)
M
-
in the reactor may be highly non-statistical, e.g. with only even-M species present.
Received 17 April 2001 相似文献
244.
245.
Ag/AgCl纳米粒子的制备及其共振散射光谱研究 总被引:14,自引:1,他引:14
以AgCl纳米粒子作晶种,在柠檬酸三钠存在条件下,AgCl纳米粒子表面结合的银离子被光化学还原而获得Ag/AgCl复合纳米粒子。研究了Ag/AgCl纳米粒子的光谱特性,在310和590nm处产生二个共振散射峰,在400nm处产生一个吸收峰。 相似文献
246.
Vladimir P. Zhdanov 《Physics letters. A》2018,382(15):1052-1057
Contacts of biological or biologically-inspired spherically shaped nanoparticles (e.g., virions or lipid nanoparticles used for intracellular RNA delivery) with a lipid membrane of cells are often mediated by multiple relatively weak ligand-receptor bonds. Such contacts can be studied at a supported lipid bilayer. The rupture of bonds can be scrutinized by using force spectroscopy. Bearing a supported lipid bilayer in mind, the author shows analytically that the corresponding dependence of the force on the nanoparticle displacement and the effect of the force on the bond-rupture activation energy are qualitatively different compared to what is predicted by the conventional Bell approximation. 相似文献
247.
Adeel Afzal 《光谱学快报》2013,46(6):411-416
The structural and morphological features influencing the glass transition temperature of epoxy/silica nanohybrid and nanocomposite materials containing 25–30 phr of nanoscale silica phases are discussed in this letter to answer the questions related to the processing–structure–property relationships. X-ray photoelectron spectroscopy and atomic force microscopy are used to study the surface chemical structure and morphology of epoxy/silica nanohybrids and nanocomposites. Nanohybrids are synthesized via in situ sol-gel process, while the respective nanocomposites are prepared by mechanical blending of preformed silica nanoparticles into epoxy resin. Differential scanning calorimetry is used to determine glass transition temperature of different materials. The surface analytical characterizations reveal that in situ sol-gel process is more suitable for producing organic–inorganic hybrid materials with superior glass transition temperature owing to the achievement of stronger interfacial compatibility and greater crosslink density. A number of other factors affecting glass transition temperature are explored and discussed with reference to surface chemistry, microstructure, and morphology of epoxy/silica nanohybrids and nanocomposites, respectively. 相似文献
248.
Jian Li Yueqiang Lin Xiaodong Liu Qingmei Zhang Hua Miao Tingzhen Zhang 《Phase Transitions》2013,86(1):49-57
In this study, the NiFe2O4 nanoparticles have been prepared by co-precipitation and calcination process. Using a vibrating sample magnetometer (VSM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive spectrometer of X-ray (EDX), and X-ray photoelectron spectroscopy (XPS), the samples obtained by co-precipitation and then by further calcination have been analyzed. The experimental results show that the precursor synthesized by co-precipitation is the composite of both amorphous FeOOH and Ni(OH)2, but has no amorphous NiFe2O4. The results of both EDX and XPS revealed that the FeOOH species is wrapped up by Ni(OH)2 species. In the calcination process, the amorphous composite is dehydrated and transformed gradually into crystalline NiFe2O4 nanoparticles, with the metal ions diffusing. The reaction is different from the one used to prepare other ferrite (e.g., CoFe2O4, MnFe2O4, Fe3O4, etc.) nanoparticles directly by co-precipitation. With increasing calcination temperature, the NiFe2O4 grains grow and the magnetization is enhanced. 相似文献
249.
K. Srinivasa Rao Y. Lingappa M. Ravi Prakash Reddy T.L. Prakash 《Phase Transitions》2013,86(3):235-243
In this study, we successfully synthesized single-phase hexagonal closed packed (HCP) and face-centered cubic (FCC) nickel nanoparticles via reduction of nickel nitrate hexahydrate and nickel acetate tetrahydrate, respectively, in polyethylene glycol-200. Structural information of the as-synthesized nickel nanoparticles are studied by X-ray diffraction (XRD) as a function of the molar concentration of the nickel precursor. XRD results reveal that low concentrations of nickel precursor (0.005?M and below) favor the HCP, while high concentrations favor the mixture of HCP and FCC crystal structures. Particle size of HCP structure is found in the range of ~15?nm via transmission electron microscope analysis. Vibratory sample magnetometer is employed to study its magnetic behavior and the results reveal that FCC crystalline phase shows ferromagnetic nature with high saturation magnetization (M s?~?39.6?emu?gm?1) as compared to metastable HCP crystalline structure (M s?~?2?emu?gm?1). The surfactants bonding on the surface of nickel nanoparticles are studied. 相似文献
250.