首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   543篇
  免费   158篇
  国内免费   73篇
化学   195篇
晶体学   12篇
力学   74篇
综合类   2篇
数学   45篇
物理学   446篇
  2024年   1篇
  2023年   2篇
  2022年   18篇
  2021年   8篇
  2020年   13篇
  2019年   5篇
  2018年   10篇
  2017年   25篇
  2016年   21篇
  2015年   25篇
  2014年   28篇
  2013年   48篇
  2012年   53篇
  2011年   42篇
  2010年   39篇
  2009年   45篇
  2008年   38篇
  2007年   41篇
  2006年   43篇
  2005年   33篇
  2004年   29篇
  2003年   26篇
  2002年   26篇
  2001年   17篇
  2000年   25篇
  1999年   18篇
  1998年   11篇
  1997年   28篇
  1996年   14篇
  1995年   8篇
  1994年   8篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
排序方式: 共有774条查询结果,搜索用时 109 毫秒
11.
制备了聚苯乙炔(PPA)LB多层膜,将其作为电荷产生层首次应用于机能分离型光电导体领域.从π A曲线发现,PPA单分子膜具有表面压力的各向异性和松弛特性.TEM照片显示,PPA分子链在LB膜中有序排列.转移比和XPS的研究表明,复合膜沉积均匀.与PPA涂膜相比,以PPA LB多层膜作为电荷产生层的光电导体表面充电电位V0=1345V,光照1s后的光衰百分比ΔV1s=6505%,半衰时间t1/2=058s,具有更优异的光电导性能.  相似文献   
12.
《Electroanalysis》2003,15(13):1139-1142
Electrochemical properties of Fc‐PEM films have been studied by changing the chemical structure of the polymer chains and the content of Fc moiety in the film systematically. We have prepared a series of PEM films by a layer‐by‐layer deposition of polycations, Fc‐modified poly(allylamine) (Fc‐PAA) and poly(ethyleneimine) (Fc‐PEI), and polyanionic poly(vinyl sulfate) (PVS) on the surface of a gold electrode. The redox properties of the Fc‐PAA/PVS and Fc‐PEI/PVS films depended significantly on the content of Fc moiety in the polymer chains and on the polymer type. Fc‐ PAA and Fc‐PEI polymer chains can penetrate 3 or 4 PAA/PVS bilayers inserted between the redox polymers and electrode. The Fc‐PAA film‐modified electrode can be used for electrocatalytic oxidation of ascorbic acid.  相似文献   
13.
SiO2-ZrO2 based nanostructured multilayers films have been prepared by sol–gel processing from metallorganic precursors by low temperature inorganic polymerization reactions. Simultaneous gelation of both precursors was realized. Homogeneous and transparent films were obtained at room temperature by dip- and spin-coating on glass and silicon wafer substrates. Samples with successively deposited layers (1–3 layers) and successive thermal treatments have been also studied. Each deposited layer was thermally treated for 1 h at 300°C. The coatings were characterized by XRD, spectroellipsometry (SE), UV-VIS spectroscopy and AFM methods. The influence of substrates, number of coatings and number of thermal treatments on the optical and structural properties of the films was established. The thickness of three deposited SiO2-ZrO2 layers is about 496 nm on glass substrates and 413 nm on the silicon wafer substrate. The films deposited on glass are more porous than those deposited on silicon. The properties of optical waveguide prepared from SiO2-ZrO2 layers on silicon substrates will be discussed.  相似文献   
14.
The reflecting of a single attosecond pulse from a periodic Mo/Si multilayer was investigated. By changing the number of bi-layers, the periodic multilayer showed greatly different spectral and temporal responses of the attosecond pulse reflection, which has been discussed in detail in this paper. The capability of attosecond pulse reflection of the periodic multilayers with different bi-layer numbers has been evaluated using suitable temporal parameters. In addition, the condition for obtaining high-efficiency reflected pulses has been analyzed by comparing the pulse responses of the periodic multilayer with different layers. The transfer-matrix method together with the fast Fourier transform has been used in our simulation.  相似文献   
15.
Alginate and chitosan are among the most common biopolyelectrolytes. Surfactants can be included in alginate and chitosan formulations in order to improve their physical and functional properties. In the present study, the effect of the anionic surfactant sodium dodecyl sulfate (SDS) on alginate‐chitosan polyelectrolyte multilayer (PEM) films is reported for the first time. Layer‐by‐layer deposition technique was employed to prepare the PEM samples and the samples were characterized by ellipsometry, X‐ray reflectivity, atomic force microscopy, and quartz crystal microbalance with dissipation. Incorporation of SDS into PEM formulations increased the film thickness and an increased adsorption behavior between alginate and chitosan layers are observed. Since the concentration of SDS was below its critical micelle concentration, no micelle formation was expected and hydrophobic‐hydrophobic interaction between alginate and SDS might be the main reason. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1798–1803  相似文献   
16.
Shortly after processing, Polyethylene/Polypropylene (PE/PP) multilayer films demonstrate an increase in tensile modulus and other mechanical properties when the individual layer thickness is below 0.5 µm. Subsequent annealing at 60 °C for 16 h brings the properties of all other samples to similar values. WAXD characterization of the layered films identified a prevalence of mesophase in the thicker PP layers. In samples with increased layer numerosity or subjected to annealing, WAXD detected its conversion to α crystalline phase that correlates with improved mechanical properties. SSNMR and DSC detailed the defective nature of α iPP crystallites. Comonomers, detected by NMR in the commercial polymers used for the films, are the source of “tunable disorder” that dictates the formation of the PP mesophase and the low temperature of conversion to the mechanically stronger defective α phase. Soft intrafilm layer interfaces instead enable nucleation and localized polymer chain rearrangement even without annealing. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 520–531  相似文献   
17.
The two terminal pyridyl nitrogen atoms of 2,7‐bis(4‐pyridyl)fluorene ( 1 ) were coordinated to Pd(II) ions to give self‐assembled, multilayer films using the layer‐by‐layer (LbL) method. The films were prepared by alternately dipping the substrate, pre‐coated with a polyethyleneimine layer, in aqueous solutions of PdCl2 and ethanol solutions of 1 . The resulting films were characterized using UV–visible absorption spectroscopy, atomic force microscopy (AFM), X‐ray photoelectron spectroscopy, scanning electron microscopy (SEM) and inductively coupled plasma atomic emission spectroscopy (ICP‐AES). UV–visible spectra and SEM images show almost uniform growth of the film in a near ideal LbL manner. AFM images show that nanostructured aggregates of Pd(II) complexes form on the surface. With an increase in the number of Pd(II)/ 1 bilayers, more particulate aggregates are distributed on the surface. When released from the substrate, the Pd(II) complex nanostructure shows high catalytic activity for Suzuki–Miyaura and Mizoroki–Heck cross‐coupling reactions. The catalyst loading is as low as 9.1 × 10?3 mol% Pd, as measured using ICP‐AES, and high turnover numbers of up to 1.08 × 104 are obtained. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
18.
19.
A novel set of light-responsive polyelectrolytes has been developed and studied, to control and tune surface wettability by introducing various types of substituted R head-groups of azo polyelectrolytes in self-assembled multilayer (SAMU) films. As part of a larger project to develop polymer surfaces where one can exert precise control over properties important to proteins and cells in contact, photo-reversibly, we describe here how one can tune quite reliably the contact angle of a biocompatible SAMU, containing a photo-reversible azo chromophore for eventual directed cell growth. The azo polyelectrolytes described here have different substituted R head-group pairs of shorter-ionized hydrophilic COOH and SO3H, shorter non-ionized hydrophobic H and OC2H5, and larger non-ionized hydrophobic octyl C8H17 and C8F17, and were employed as polyanions to fabricate the SAMU onto silicon substrates by using the counter-charge polycation PDAC. The prepared SAMU films were primarily characterized by measurement of their contact angles with water. The surface wetting properties of the thin films were found to be dependent on the type of substituted R-groups of the azo polyelectrolytes through their degree of ionization, size, hydrophobicity/hydrophilicity, solubility, conformation, and inter-polymeric association and intra-polymeric aggregation. All these factors appeared to be inter-related, and influenced variations in hydrophobic/hydrophilic character to different extents of aggregates/non-aggregates in solution because of solvation effects of the azo polyanions, and were thus manifested when adsorbed as thin films via the SAMU deposition process. For example, one interesting observation is significantly higher contact angles of 79° for SAMU films of larger octyl R groups of PAPEA-C8F17 and PAPEA-C8H17 than for others with contact angles of 64° observed for non-polar R-groups of OC2H5 and H. Furthermore, lower contact angle values of 59° for SAMU films with polar R-groups of COOH and SO3H relative to that of non-polar R-groups are in accordance with their expected order of the hydrophilicity or hydrophobicity. It is possible that the large octyl groups are more effective in shielding the ionic functional groups on the substrate surface, and contributed less to the water drop-molecule interactions with ionic groups of the PDAC and/or AA groups. In addition, higher hydrophobicity of the SAMU films may be due to the incorporation of bulky and hydrophobic groups in these polyelectrolytes, which can produce aggregates on the surfaces of the SAMU films. Through understanding and controlling the complex aggregation behavior of the different substituted R-groups of these azo polyelectrolytes, and hence their adsorption on substrates, it appears possible to finely tune the surface energy of these biocompatible films over a wide range, enhance the photo-switching capabilities of the SAMU films, and tailor other surface properties for the development and application of new devices in diverse areas of microfluidics, specialty coatings, sensors, and biomedical sciences.  相似文献   
20.
Sorption of vapors of four organic compounds in two glassy polymers, cellulose triacetate (CTA) and poly[(trimethylsilyl)propyne] (PTMSP), has been reported and analyzed in terms of Guggenheim‐Anderson‐De Boer (GAB) model. These two structurally and physicochemically different glassy polymers both independently showed that one sorption site was formed by about three monomeric units. This finding held true for vapors of all characterized compounds; that is, for methanol, for its derivatives dimethyl carbonate and methyl acetate, and for acetone. The “rule of three” might thus also be applicable to other sorbates and glassy polymers. Further, an original modification of the GAB model for the sorption of alcohols in PTMSP was derived and successfully tested. Overall, the analyses of the sorption isotherms, heats of sorption and diffusion coefficients supported the view that the sorption of vapors in glassy polymers has adsorptive nature. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 561–569  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号