首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   368篇
  免费   7篇
  国内免费   28篇
化学   366篇
晶体学   1篇
力学   7篇
物理学   29篇
  2022年   3篇
  2021年   2篇
  2020年   6篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   10篇
  2015年   7篇
  2014年   11篇
  2013年   34篇
  2012年   7篇
  2011年   6篇
  2010年   6篇
  2009年   14篇
  2008年   11篇
  2007年   14篇
  2006年   14篇
  2005年   12篇
  2004年   23篇
  2003年   25篇
  2002年   19篇
  2001年   22篇
  2000年   24篇
  1999年   15篇
  1998年   13篇
  1997年   20篇
  1996年   14篇
  1995年   19篇
  1994年   14篇
  1993年   13篇
  1992年   8篇
  1991年   5篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1979年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
41.
J Billard  B K Sadashiva 《Pramana》1979,13(3):309-318
The total miscibility method is applied to study the recently discovered mesophases of disc-like molecules, benzene-hexa-n-alkanoates. These compounds do not form continuous solid solutions, but are totally miscible in the liquid and mesomorphic states. The virtual mesophase-isotropic transition temperature for the hexanoate compound derived from the miscibility diagram is in excellent accord with that obtained from the previously reported pressure-temperature phase diagram. With simplifying assumptions, it is possible to predict with acceptable reliability the isobaric binary phase diagrams of any two members of the series. The real and virtual mesophase-liquid transition temperatures are linear functions of the molecular weight. On the other hand, a plot of the crystal-liquid transition temperatures versus the molecular weight exhibits a minimum. Total miscibility in the mesomorphic state is not observed for two members of different discogenic series, but the existence of different mesophase types is not proved. Lyotropic mesomorphism for a disc-like mesophase is established.  相似文献   
42.
The influence of dissolved propane (up to 31.2 wt %) on the phase equilibria of 5 wt % polystyrene (PS) dissolved in 66/34 wt % trans/cis‐decahydronaphthalene (DHN) was measured over the temperature range of 323–423 K. A suitable temperature, pressure, and propane composition operating space was defined to measure intrinsic viscosities of a single fluid phase. Intrinsic viscosities of PS in cosolvent mixtures of propane and trans/cis‐DHN were measured between 323 and 423 K and between 70 and 208 bar. The addition of propane to the isomeric mixture of DHN resulted in a decreased solvent quality for PS, causing a contraction of the PS coil. The most dramatic decrease in solvent quality with the addition of propane occurred at 323 K and 70 bar with approximately a 36% reduction in the viscometric radius with the addition of 45 mol % propane to DHN. At 423 K, the solvent quality was less sensitive to the addition of propane and only a 13% reduction in the viscometric radius was observed at 70 bar and 45 mol % propane in DHN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   
43.
The data presented for polysulfone in o-dichlorobenzene support previous observations on other systems in which the heats of solution decrease linearly with increasing temperature of measurement. Consistent with similar measurements on polycarbonate and polyphenylene oxide, a dramatic slope change from 0.078 cal/g-C° below 120°C to 0.019 cal/g-C° above 120°C occur for the data on polysulfone. The source of these heats is due primarily to the enthalpy difference between the solid polymer and its corresponding liquid amorphous state at the measurement temperature since the heats of mixing are rationalized to be small.  相似文献   
44.
Polymer complexes were prepared from high molecular weight poly(acrylic acid) (PAA) and poly(styrene)‐block‐poly(4‐vinyl pyridine) (PS‐b‐P4VP) in dimethyl formamide (DMF). The hydrogen bonding interactions, phase behavior, and morphology of the complexes were investigated using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), dynamic light scattering (DLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). In this A‐b‐B/C type block copolymer/homopolymer system, P4VP block of the block copolymer has strong intermolecular interaction with PAA which led to the formation of nanostructured micelles at various PAA concentrations. The pure PS‐b‐P4VP block copolymer showed a cylindrical rodlike morphology. Spherical micelles were observed in the complexes and the size of the micelles increased with increasing PAA concentration. The micelles are composed of hydrogen‐bonded PAA/P4VP core and non‐bonded PS corona. Finally, a model was proposed to explain the microphase morphology of complex based on the experimental results obtained. The selective swelling of the PS‐b‐P4VP block copolymer by PAA resulted in the formation of different micelles. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1192–1202, 2009  相似文献   
45.
An investigation of miscibility and isothermal crystallization behavior of Polyamide 6 (PA6)/Poly(vinyl alcohol) (PVA) blends was conducted. Fourier transform infrared spectra (FTIR) analysis indicated that the interactions between the carbonyl groups of PA6 and hydroxyl groups of PVA increase as the weight ratios of PA6 to PVA of PA6/PVA specimens increase. This interaction between PA6 and PVA leads to their miscibility in the amorphous region and even some extent effects on their crystal phase, respectively. Further isothermal crystallization behavior of PA6/PVA indicate that the miscibility of PVA in PA6 leading difficulty in crystallization of PA6. Several kinetics equations are employed to describe the effects of PVA on the crystallization properties of PA6 in PA6/PVA blends in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1360–1368, 2008  相似文献   
46.
Blend films from cellulose and konjac glucomannan (KGM) in room temperature ionic liquid 1‐allyl‐3‐methylimidazolium chloride were satisfactorily prepared by coagulating with water. The composition of the blend films was gravimetrically analyzed, and the compatibility of the two natural polymers was characterized by Fourier transform infrared spectroscopy and wide‐angle X‐ray diffraction. The results indicate good compatibility and strong interactions between cellulose and KGM, resulting in almost no loss of the water‐soluble KGM from the blend films even after the water coagulating and washing. However, microstructure analyses portrayed phase separations in the blend films, namely, egg‐like new phase particles were embedded in a continuous matrix base (MB). Phase diagram analysis and differential scanning calorimetry of the phase inversion coagulation process suggest that relative low molecular mass part of both cellulose and KGM formed the continuous MB, whereas the egg‐like new phase particles were super patterns of relative high molecular mass of both polymers, which played an important role in strengthening the blend material. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1686–1694, 2009  相似文献   
47.
We extended the previous lattice model for polymer solution systems to binary polymer blend systems. Based on Müller’s Monte-Carlo simulation data for symmetric system (r1 = 32 and r2 = 32), the energy of mixing is correlated as a function of temperature and composition using an empirical expression. In addition, we introduce new universal functions which reflect the characteristics of polymer-polymer miscibility behaviors. In associated blend systems, specific interactions between polymer segments are considered by using a secondary lattice. Using only one or two adjustable parameters, the proposed model satisfactory correlates the experimental data of real polymer blend systems with greater accuracy than those of other models.  相似文献   
48.
A novel blend system was prepared by blending organosoluble nitro‐substituted polybenzimidazole (NO2‐PBI) and polyetherimide (PEI) in a cosolvent at a moderate condition. It was shown that the NO2‐PBI/PEI blends not only possess tractable processability owing to the enhanced solubility of NO2‐PBI but also retain the desirable features of unmodified PBI/PEI blends. Apparent miscibility in the blends was observed and attributed to hydrogen‐bonding interactions between N? H groups in NO2‐PBI and carbonyl groups in PEI. It was revealed that the NO2‐PBI/PEI blends phase‐separate upon heating above the glass‐transition temperatures. The observed mixing of NO2‐PBI and PEI in a molecular level, although sustainable only in the glassy region, was shown to lend synergy effects to the physical properties of the blends. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1778–1783, 2001  相似文献   
49.
In this article, the miscibility of poly(ε‐caprolactone) (PCL) with poly(styrene‐co‐acrylonitrile) (SAN) containing 25 wt % of acrylonitrile is studied from both a qualitative and a quantitative point of view. The evidences coming from thermal analysis (differential scanning calorimetry) demonstrate that PCL and SAN are miscible in the whole range of composition. The Flory interaction parameter χ1,2 was calculated by the Patterson approximation and the melting point depression of the crystalline phase in the blends; in both cases, negative values of χ1,2 were found, confirming that the system is miscible. The interaction parameter evaluated within the framework of the mean field theory demonstrates that the miscibility of PCL/SAN blends is due to the repulsive interaction between the styrene and acrylonitrile segments in SAN. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   
50.
Various phase behavior of blends of poly(vinyl ether)s with polyesters of two types (highly crystalline and less crystalline with different main‐chains) were examined using differential scanning calorimetry (DSC) and optical microscopy (OM). Effects of varying the main‐chain polarity of the constituent polyesters on the phase behavior of the blends were analyzed. Miscibility in PVME/polyester blends was found only in polyesters with backbone CH2/CO ratio = 3.5 to 7.0). Tg‐composition relationships for blends of PVME with highly crystalline polyesters (PBA, PHS) were found to differ significantly from those for PVME blends with less‐crystalline polyesters (PTA, PEAz). Crystallinity of highly crystalline polyester constituents in blends caused significant asymmetry in the Tg‐composition relationships, and induced positive deviation of blends' Tg above linearity; on the other hand, blends of PVME with less crystalline polyesters exhibit typical Fox or Gordon‐Taylor types of relationships. The χ parameters for the miscible blends were found to range from ?0.17 to ?0.33, reflecting generally weak interactions. Phase behavior was analyzed and compared among blends of PVME with rapidly crystallizing vs. less‐crystallizing polyesters, respectively. Effects of polyesters' crystallinity and structures on phase behavior of PVME/polyester blends are discussed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2899–2911, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号