首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7493篇
  免费   1754篇
  国内免费   1735篇
化学   4443篇
晶体学   408篇
力学   914篇
综合类   83篇
数学   169篇
物理学   4965篇
  2024年   5篇
  2023年   32篇
  2022年   174篇
  2021年   182篇
  2020年   159篇
  2019年   152篇
  2018年   186篇
  2017年   265篇
  2016年   341篇
  2015年   283篇
  2014年   383篇
  2013年   619篇
  2012年   554篇
  2011年   657篇
  2010年   559篇
  2009年   641篇
  2008年   592篇
  2007年   634篇
  2006年   644篇
  2005年   535篇
  2004年   502篇
  2003年   371篇
  2002年   345篇
  2001年   292篇
  2000年   284篇
  1999年   243篇
  1998年   206篇
  1997年   205篇
  1996年   174篇
  1995年   163篇
  1994年   127篇
  1993年   97篇
  1992年   93篇
  1991年   74篇
  1990年   63篇
  1989年   31篇
  1988年   29篇
  1987年   22篇
  1986年   11篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   11篇
  1981年   5篇
  1979年   5篇
  1978年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
Thin film materials are widely used in the fabrication of semiconductor microelectronic devices. In thin film deposition, cleanliness of substrate surface have become critically important as over 50% of yield losses in integrated circuit fabrication are caused by microcontamination [1]. There are many wafer cleaning techniques. The most successful approach for silicon wafer cleaning technique is RCA clean [2]. But for glass substrate it is still not known which procedure of cleaning is the best. This paper provides an understanding of the right way of glass wafer cleaning method, with a focus towards identifying good bond strength. Two wafer cleaning techniques have been used for cleaning glass substrates in the context of laser micro-joining of dissimilar substrates. First cleaning procedure involves two steps, first cleaning in acetone solution and then in DI water solution. After each step dried with N2. Second cleaning procedure involves four steps, first cleaning with 1% Alconox solution, second in DI water, third in acetone solution and finally in a methanol solution and dried with N2 after each step. Deposition of Ti thin film on top of these two types of substrate using DC magnetron sputtering method also showed better adhesion of Ti film on glass for the second type of cleaning method. Scanning electron microscopy (SEM) analyses of the lap shear tested failed surfaces for these two kinds of samples revealed strong bond for samples prepared by second cleaning method compared to first cleaning method. Characterization of these two sets of samples using X-ray photoelectron spectroscopy (XPS) has shown excellent contamination removal for the second cleaning method. This modification is believed to be due to reduction of carbon contamination.  相似文献   
942.
In the work the focus is on the preparation of self-assembled monolayer-like films consisting of thiolated cyclodextrin on gold substrate and a characterization by using secondary ion mass spectrometry. The short (1 min) and long (1 h) time preparations of self-assembled monolayer-like films, resulting in submonolayer and monolayer regimes, are investigated, respectively. The observed species of thiolated cyclodextrin (M as molecular ion) self-assembled monolayer-like films are assigned to three groups: AuxHySz clusters, fragments with origin in cyclodextrin molecule associated with Au, and molecular ions. The group of AuxHySz (x = 2-17, y = 0-2, z = 1-5) clusters have higher intensities than other species in the positive and even more in negative mass spectra. Interestingly, the dependence between the number of Au and S atoms shows that with the increasing size of AuxHySz clusters up to 11 Au atoms, the number of associated S atoms is also increasing and then decreasing. Molecular species as (M−S+H)Na+, (M+H)Na+, AuMNa+, (M2−S)Na+, and M2Na+ are determined, and also in cationized forms with K+. The intensities of thiolated cyclodextrin fragments at the long time preparation are approximately 10 times higher than the intensities of the same fragments observed at the short time. The largest observed ions in thiolated cyclodextrin self-assembled monolayer-like films are AuM2 and Au2M. The thiolated cyclodextrin molecular ions are compared with hexadecanethiol molecular ions in the form of AuxMw where the values of x and w are smaller for thiolated cyclodextrin than for hexadecanethiol. This result is supported with larger, more compact, and more stabile thiolated cyclodextrin molecule.  相似文献   
943.
The influence of high-temperature annealing on the electrical properties and microstructure of tin-doped indium oxide (ITO) thin films was investigated as a function of oxygen gas flow ratio to argon gas during the sputtering deposition. The ITO thin films were annealed at 500 °C in air after the deposition. It was found that the ITO thin films, which were deposited in relatively low oxygen gas flow ratio, exhibited high Hall mobility and low-resistivity after the annealing. Furthermore, the X-ray reflectivity and diffraction measurement revealed that the ITO thin film with low-resistivity after annealing exhibited high packing density, smooth surface and low crystallization degree. It can be considered that the carrier electron scattering was suppressed with increasing in the packing density of the ITO thin film; as a result, the Hall mobility and resistivity were improved.  相似文献   
944.
A fabrication of all-solid-state thin-film rechargeable lithium ion batteries by sol-gel method is expected to achieve both the simplification and cost reduction for fabrication process. TiO2 thin film electrode was prepared by PVP (polyvinylpyrrolidone) sol-gel method combined with spin-coating on Li1 + xAlxGe2 − x(PO4)3 (LAGP) solid electrolyte which has wide electrochemical window. The thin film was composed of anatase TiO2 that is the most active phase for Li insertion and extraction and contacted well with LAGP substrate. In the cyclic voltammogram, a redox couple was observed at 1.8 V vs. Li/Li+ assigned to Li insertion/extraction into/from anatase TiO2, indicating that the thin film worked as electrode for lithium battery. The charge and discharge test in various charge and discharge rates revealed that the discharge process (delithiation) is thought to be faster than charge process (lithiation). It is attested that the sol-gel process, which derives both simplification and cost reduction for fabrication process, can be applied to thin film battery using LAGP solid electrolyte.  相似文献   
945.
The TS-1 film on tubular mullite support was prepared by secondary growth via template-free route using tetraethyl orthosilicate (TEOS) and tetrabutyl orthotitanate (TBOT) as silica and titanium sources. The as-made films were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and ultraviolet-visible spectroscopy (UV-vis). Continuous TS-1 seed layer was bonded tightly to the mullite substrates. After secondary growth in the template-free synthesis solution, intergrown TS-1 zeolite film with the typical MFI-type structure was formed on the outer surface of support. The Si atoms in zeolitic lattice were found to be isomorphously substituted by Ti atoms which existed only in tetrahedral coordination. The thickness of the obtained TS-1 zeolite film was less than 20 μm.  相似文献   
946.
The scanning force microscope (SFM) was used to investigate morphology of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blend. The effect of solvent and dewetting in surface structure of PEO film was reported. The results manifested that the crystallization of PEO could be suppressed completely in ultrathin region via using chloroform as a solvent, and the branched-like crystallization was recovered after dewetting. Also, the effect of thickness, the ratio of PEO/PAA and dewetting in surface morphology of PEO-PAA blend films were investigated. These results showed that the crystallization was highly dependent on the ratio of PEO/PAA and the thickness of blend film. Furthermore, we assembled the PEO/PAA layer-by-layer film by spin-casting method for the first time, which exhibited highly efficiency. As a complementary tool, we also used lateral force microscopy (LFM) to explore surface information of these films. The result was indicative of interfacial constraints in ultrathin region, and also was supported by the results showing the spin-casting PEO/PAA blends rather than heterogeneous mixture.  相似文献   
947.
We report structural and optical properties of aluminum nitride (AlN) thin films prepared by RF magnetron sputtering. A ceramic AlN target was used to sputter deposit AlN films without external substrate heating in Ar-N2 (1:1) ambient. The X-ray diffraction and high resolution transmission electron microscopy results revealed that the films were preferentially oriented along c-axis. Cross-sectional imaging revealed columnar growth perpendicular to the substrate. The secondary ion mass spectroscopy analysis confirmed that aluminum and nitrogen distribution was uniform within the thickness of the film. The optical band gap of 5.3 eV was evaluated by UV-vis spectroscopy. Photo-luminescence broad band was observed in the range of 420-600 nm with two maxima, centered at 433 nm and 466 nm wavelengths related to the energy states originated during the film growth. A structural property correlation has been carried out to explore the possible application of such important well oriented nano-structured two-dimensional semiconducting objects.  相似文献   
948.
In this paper, silver nanostructures with controlled morphologies, such as plates, rods, belts, sheets and their self-assembled films have been prepared on copper and aluminum substrates by a surfactant-assisted colloidal chemical method. The X-ray powder diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicated that the Ag nanostructures grew on the substrates with cubic symmetry and single-crystalline in nature. An oriented attachment with surfactant-assisted mechanism and a cooperative effect of surfactant and chloride ion on the morphology of Ag nanostructures were investigated systematically and synthetically.  相似文献   
949.
The magnesium oxide thin films were prepared by thermal oxidation (in air) of vacuum evaporated magnesium thin film on alumina. It was found that oxidation temperature (623 K, 675 K and 723 K) and thickness (103 nm and 546 nm) dependent effects were prominently manifested in the surface morphology. Electrical and microwave properties (8-12 GHz) of the MgO thin films were also carried out. X-ray diffraction showed orientation along (2 0 0) and (2 2 0) directions. Flowerlike morphology was observed from SEM and flake like morphology for films of higher thickness oxidized at higher temperatures. The magnesium oxide thin film showed NTC behavior. Microwave transmittance was found to increase with increase in oxidation temperature but was lower than alumina. Frequency and oxidation temperature dependent microwave permittivity was obtained. The microwave dielectric constant varied in the range 8.3-15.3.  相似文献   
950.
By using the radio frequency-magnetron sputtering (RF-MS) method, both pure ZnO and boron doped ZnO (ZnO:B) thin films were deposited on glass substrates at ambient temperature and then annealed at 450 °C for 2 h in air. It is found that both ZnO and ZnO:B thin films have wurtzite structure of ZnO with (0 0 2) preferred orientation and high average optical transmission (≥80%). Compared with the resistivity of 6.3 × 102 Ω cm for ZnO film, both as-deposited and annealed ZnO:B films exhibit much lower resistivity of 9.2 × 10−3 Ω cm and 7.5 × 10−3 Ω cm, respectively, due to increase in the carrier concentration. Furthermore, the optical band gaps of 3.38 eV and 3.42 eV for as-deposited and annealed ZnO:B films are broader than that of 3.35 eV for ZnO film. The first-principles calculations show that in ZnO:B thin films not only the band gap becomes narrower but also the Fermi level shifts up into the conduction band with respect to the pure ZnO film. These are consistent with their lower resistivities and suggest that in the process of annealing some substituted B in the lattice change into interstitial B because of its smaller ion radius and this transformation widens the optical band gap of ZnO:B thin film.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号