首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9121篇
  免费   1419篇
  国内免费   1413篇
化学   10139篇
晶体学   341篇
力学   35篇
综合类   43篇
数学   12篇
物理学   1383篇
  2024年   25篇
  2023年   135篇
  2022年   298篇
  2021年   365篇
  2020年   531篇
  2019年   410篇
  2018年   357篇
  2017年   333篇
  2016年   522篇
  2015年   546篇
  2014年   559篇
  2013年   942篇
  2012年   576篇
  2011年   487篇
  2010年   464篇
  2009年   518篇
  2008年   551篇
  2007年   613篇
  2006年   548篇
  2005年   539篇
  2004年   477篇
  2003年   397篇
  2002年   255篇
  2001年   189篇
  2000年   194篇
  1999年   160篇
  1998年   147篇
  1997年   136篇
  1996年   137篇
  1995年   126篇
  1994年   71篇
  1993年   61篇
  1992年   53篇
  1991年   25篇
  1990年   25篇
  1989年   20篇
  1988年   24篇
  1987年   24篇
  1986年   19篇
  1985年   21篇
  1984年   10篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
Hot-hole injection from plasmonic metal nanoparticles to the valence band of p-type semiconductors and reduction by hot electrons should be improved for efficient and tuneable reduction to obtain beneficial chemical compounds. We employed the concept of modal strong coupling between plasmons and a Fabry-Pérot (FP) nanocavity to enhance the hot-hole injection efficiency. We fabricated a photocathode composed of gold nanoparticles (Au−NPs), p-type nickel oxide (NiO), and a platinum film (Pt film) (ANP). The ANP structure absorbs visible light over a broad wavelength range from 500 nm to 850 nm via hybrid modes based on the modal strong coupling between the plasmons of Au−NPs and the FP nanocavity of NiO on a Pt film. All wavelength regions of the hybrid modes of the modal strong coupling system promoted hot-hole injection from the Au−NPs to NiO and proton/water reduction by hot electrons. The incident photon-to-current efficiency based on H2 evolution through water/proton reduction by hot electrons reached 0.2 % at 650 nm and 0.04 % at 800 nm.  相似文献   
952.
A new H-bonded crystal [RuIII(Him)3(Im)3] with three imidazole (Him) and three imidazolate (Im) groups was prepared to obtain a higher-temperature proton conductor than a Nafion membrane with water driving. The crystal is constructed by complementary N−H⋅⋅⋅N H-bonds between the RuIII complexes and has a rare Icy-c* cubic network topology with a twofold interpenetration without crystal anisotropy. The crystals show a proton conductivity of 3.08×10−5 S cm−1 at 450 K and a faster conductivity than those formed by only HIms. The high proton conductivity is attributed to not only molecular rotations and hopping motions of HIm frameworks that are activated at ∼113 K, but also isotropic whole-molecule rotation of [RuIII(Him)3(Im)3] at temperatures greater than 420 K. The latter rotation was confirmed by solid-state 2H NMR spectroscopy; probable proton conduction routes were predicted and theoretically considered.  相似文献   
953.
Two-dimensional metal-organic frameworks (2D MOFs) inherently consisting of metal entities and ligands are promising single-atom catalysts (SACs) for electrocatalytic chemical reactions. Three 2D Fe-MOFs with NH, O, and S ligands were designed using density functional theory calculations, and their feasibility as SACs for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) was investigated. The NH, O, and S ligands can be used to control electronic structures and catalysis performance in 2D Fe-MOF monolayers by tuning charge redistribution. The results confirm the Sabatier principle, which states that an ideal catalyst should provide reasonable adsorption energies for all reaction species. The 2D Fe-MOF nanomaterials may render highly-efficient HER, OER, and ORR by tuning the ligands. Therefore, we believe that this study will serve as a guide for developing of 2D MOF-based SACs for water splitting, fuel cells, and metal-air batteries.  相似文献   
954.
Multiple hydrogen bonds containing nucleophilic phosphines derived from dipeptide dual-reagents catalyzed asymmetric Michael addition reactions between indene esters and activated olefins in high yields and good to excellent enantioselectivities under mild reaction conditions. The success of current highly selective reactions should provide inspiration for expansion to other reactions and would open up new paradigms for the synthesis of indanone derivatives bearing chiral quaternary carbon centers.  相似文献   
955.
制备钯-5A分子筛萃取头,使用固相微萃取-气相色谱联用技术,建立了对混合气体中微量氢气的分析方法.实验结果表明,含氢浓度在0.0011~0.1250 mL/L范围内,具有良好线性关系,检出限为9×10-4mL/L.此方法和气相色谱法比较,有更高的灵敏度和更少的干扰,2种方法的标准偏差为8.7%.  相似文献   
956.
Herein, a new Zn-MOF material, [Zn(L1)(L2)], 1, was built successfully through a one-pot solvothermal method. The 3D MOF structure was determined by Single X-ray diffraction analysis, IR, and elemental analysis. A series of PXRD tests of 1 after being immersed in different solvents and pH solutions demonstrated the good stability of 1. Interestingly, this material displayed high catalytic activity for the visible-light-driven hydrogen generation under the illumination of white LED in pure water or a mixture of DMF and H2O without additional photosensitizers and cocatalysts. Besides, the studies also showed that the catalytic activity changed constantly as well as the solvent ratio adjustment of DMF and H2O from 4:6 to 2:8. Additionally, the catalytic activity reached the best value (743 μmol g−1 h−1) when the solvent ratio was 4:6. The heterogeneous nature and recyclability of the MOF catalyst, as well as several factors that affect the catalytic activity, were investigated and described in detail. Moreover, the photocatalytic mechanism for the hydrogen generation of 1 was also proposed based on the fluorescence spectra and UV-vis absorption.  相似文献   
957.
The fall colors are signs of chlorophyll breakdown, the biological process in plants that generates phyllobilins. Most of the abundant natural phyllobilins are colorless, but yellow phyllobilins (phylloxanthobilins) also occur in fall leaves. As shown here, phylloxanthobilins are unique four‐stage photoswitches. Which switching mode is turned on is controlled by the molecular environment. In polar media, phylloxanthobilins are monomeric and undergo photoreversible Z/E isomerization, similar to that observed for bilirubin. Unlike bilirubin, however, the phylloxanthobilin Z isomers photodimerize in apolar solvents by regio‐ and stereospecific thermoreversible [2+2] cycloadditions from self‐assembled hydrogen‐bonded dimers. X‐ray analysis revealed the first stereostructure of a phylloxanthobilin and its hydrogen‐bonded self‐templating architecture, helping to rationalize its exceptional photoswitch features. The chemical behavior of phylloxanthobilins will play a seminal role in identifying biological roles of phyllobilins.  相似文献   
958.
959.
Three series of cholesteryl-containing supramolecular hydrogen-bonded (H-bonded) liquid crystal (LC) complexes with different number of fluoro-substituent were synthesised and characterised. Cholesteryl isonicotinate as proton acceptor and 4-n-alkoxybenzoic acids with or without fluoro-substituent as proton donor had been mixed in tetrahydrofuran to obtain H-bonded LC complexes. The effect of lateral substitution and the length of terminal chain in the H-bonded precursors on the formation of the supramolecular complexes had been examined. It was found that the introduction of fluoro substituent on the induced mesogens could widen the molecular width and thus reduce the molecular aspect ratio of the complexes, therefore it could lead to compress the formation of the LCs. However, the fluoro substituent played a positive role in enhancing the intermolecular interactions and stabilising the H-bond structure of the complexes. The influence of terminal length on the mesogenic behaviours is also discussed. On increasing the spacer length, the clear point and the thermal range of induced mesophase-like cholesteric phase decreased, and an induced chiral smectic phase began to appear in some complexes with long terminal tails.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号