首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9048篇
  免费   1410篇
  国内免费   1421篇
化学   10068篇
晶体学   341篇
力学   35篇
综合类   43篇
数学   11篇
物理学   1381篇
  2024年   24篇
  2023年   135篇
  2022年   226篇
  2021年   365篇
  2020年   530篇
  2019年   410篇
  2018年   357篇
  2017年   333篇
  2016年   522篇
  2015年   546篇
  2014年   559篇
  2013年   942篇
  2012年   576篇
  2011年   487篇
  2010年   464篇
  2009年   518篇
  2008年   551篇
  2007年   613篇
  2006年   548篇
  2005年   539篇
  2004年   477篇
  2003年   397篇
  2002年   255篇
  2001年   189篇
  2000年   194篇
  1999年   160篇
  1998年   147篇
  1997年   136篇
  1996年   137篇
  1995年   126篇
  1994年   71篇
  1993年   61篇
  1992年   53篇
  1991年   25篇
  1990年   25篇
  1989年   20篇
  1988年   24篇
  1987年   24篇
  1986年   19篇
  1985年   21篇
  1984年   10篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
141.
We calculate energy barriers of atom- and proton-transfer reactions in hydrogen-bonded complexes in the gas phase. Our calculations do not involve adjustable parameters and are based on bond-dissociation energies, ionization potentials, electron affinities, bond lengths, and vibration frequencies of the reactive bonds. The calculated barriers are in agreement with experimental data and high-level ab initio calculations. We relate the height of the barrier with the molecular properties of the reactants and complexes. The structure of complexes with strong hydrogen bonds approaches that of the transition state, and substantially reduces the barrier height. We calculate the hydrogen-abstraction rates in H-bonded systems using the transition-state theory with the semiclassical correction for tunneling, and show that they are in excellent agreement with the experimental data. H-bonding leads to an increase in tunneling corrections at room temperature.  相似文献   
142.
The crystalline host–guest type complex [(18-crown-6NH4)2][SiF6]4H2Ohas been obtained as the result of the interaction of SiF42NH3 with 18-crown-6 (18C6) in an aqueous medium. Crystal data: monoclinic, space groupC 2 c, a=26.541(2), b=8.363(2), c=20.469(2) Å, = 122.43(1)°and Z=4. The final R-value is 0.070 for 3253 reflections with I 2(I).The crystals consist of the complex [NH418C6]+ cations, [SiF6]2-anions and water molecules. The ammonium cation is hydrogen bonded by three of its H-atoms to the crown ether oxygen atoms with N(1) O separations2.923(5)–2.940(5) Å and by the fourth H-atom to the fluorine atom of thehexafluorosilicate anion, the N(1)F(4) distance being 2.797(6) Å.The conformation of the macrocycle and the hydrogen-bond geometry in thecomplex cation closely resemble those in related adducts between 18-crown-6and ammonium salts. All crystal components are connected via a system of hydrogen bonds into a ribbon along the b axis in the unit cell.  相似文献   
143.
The oxidative polycondensation of 4-[(pyridin-3-ylimino)methyl]phenol (4-PIMP) with O2, H2O2, and NaOCl was studied in an aqueous alkaline medium between 50°C and 90°C. Oligo-4-[(pyridin-3-ylimino)methyl]phenol (O-4-PIMP) prepared was characterized by 1H-NMR, 13C-NMR, FT-IR, UV-VIS, size-exclusion chromatography, and elemental and thermal analyses techniques. At the optimum reaction conditions, the yield of O-4-PIMP was 18.9%, 39.4%, and 46.8% using H2O2, O2, and NaOCl oxidant, respectively. According to the TG analysis, the initial degradation temperature of O-4-PIMP was 218°C, which was by 50°C higher than that of 4-PIMP. Thermal analyses of 4-PIMP and O-4-PIMP were carried out in N2 atmosphere at 15–1000°C. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electrochemical energy gaps of 4-PIMP and O-4-PIMP were determined from the onset potentials for n-doping and p-doping, respectively. Also, optical band gaps of 4-PIMP and O-4-PIMP were determined according to UV-VIS measurements.  相似文献   
144.
Significant - interaction is found in the complexes of (S, S)-dimethylpyridino-18-crown-6 with (R)- and (S)-[-(1-naphthyl)ethyl]ammonium perchlorate. This finding is supported by the1H NOESY NMR spectral technique, greater chemical shift changes of aromatic protons in both host and guest molecules upon complexation, and by molecular mechanics calculations. Because of the flexibility of the ligand, the tripod hydrogen bonding causes13C relaxation times of all periphery carbons to decrease without significant selectivity. Rotational energy barrier calculations of the methyl groups of the complexed ligand also show that the (S, S)-host-(R)-guest is the more stable complex.  相似文献   
145.
Isocytosine (ICH; 1) exists in solution in an equilibrium of tautomers 1a and 1b with the N1 and N3 positions carrying the acidic proton, respectively. In the solid state, both tautomers coexist in a 1:1 ratio. As we show, the N3H tautomer 1b can selectively be crystallized in the presence of the model nucleobase 1-methylcytosine (1-MeC). The complex 1b x (1-MeC)2 x H2O (2) forms pairs through three hydrogen bonds between the components; hydrogen bonds between identical molecules are also formed, leading to an infinite tape structure. On the other hand, the N1H tautomer 1a co-crystallizes with protonated ICH to give [1a x ICH2]NO3 (3), again with three hydrogen bonds between the partners, yet the acidic proton is disordered over the two entities. With M(II)(dien) (M=Pt, Pd; dien=diethylenetriamine) preferential coordination of tautomer 1a through the N3 position is observed. DFT calculations, which were also extended to Pt(II)(tmeda) linkage isomers (tmeda=N,N,N',N'-tetramethylethylenediamine), suggest that intramolecular hydrogen bonding between the ICH tautomers and the co-ligands at M, while adding to the preference for N3 coordination, is not the major determining factor. Rather it is the inherently stronger Pt-N3 bond which favors complexation of 1a. With an excess of M(II)(dien), dinuclear species [M2(dien)2(IC-N1,N3)]3+ (M=Pd(II), 4 and Pt(II), 5) also form and were isolated as their ClO4(-) salts and structurally characterized. In strongly acidic medium 5 is converted to [Pt(dien)(ICH-N1)]2+ (6), that is, to the Pt(II) complex of tautomer 1b.  相似文献   
146.
常贯儒  周立新陈动 《中国化学》2006,24(11):1514-1522
A systematic quantum chemical characterization of intrinsic structure, energies and spectral properties of all the studied cross-link adducts formed by the novel trans platinum with thiazole ligand has been carried out at B3LYP/6-31G^* level of theory with the Lanl2dz pseudo potential basis set for the Pt atom. Special attention has been paid to the relative stability of these complexes and the factors that probably alter the order of the relative stability. The important influence of hydrogen bond on the structures, the energies and the spectral property was revealed. Other factors that contribute to relative stability including solvation effect, entropy and electronic delocalization energy were taken into account. The stability energy of the whole complex, and the interaction energy between two purine bases and the [Pt-(NH3)thiazole]^2+ group were adopted to study the interplay among subsystems and their contribution to relative stability of all the studied cross-link model. Finally, basic spectral properties of these complexes including H(8) chemical shifts of all the studied complexes and the VCD (vibrational circular dichroism) spectra of two pairs of GG chelate enantiomers, were provided in order to define the structure of the most possible duplex bearing novel trans platinum drug lesions.  相似文献   
147.
1 INTRODUCTION The controlled assembly of inorganic and coordination polymers from simple building blocks is an important challenge in the design of high- dimensionality systems. In the crystal engineering 'toolbox'[1], hydrogen bonding moieties are perhaps the implements used the most in the design of such supramolecular systems[2], and have been particularly strongly applied towards the synthesis of molecular magnetic materials[3~6]. Copper complexes play an important role in catalyzin…  相似文献   
148.
A marine green alga,Chlamydomonas sp. strain MGA161 was cultivated under illumination of red and white lights. The growth rate under red light illumination was almost the same as that in the basic conditions under white light illumination, but red light-grown cells accumulated almost twice as much starch as white light-grown cells. Although there was a slight decrease in carbonic anhydrase activity, red light-illuminated cells had almost 2.3 times the fructose-l,6-diphos-phatase activity of white light-illuminated cells. Red light might stimulate starch accumulation by increasing the amounts of enzymes related to carbon fixation through the phytochrome system. Cells grown under red light degraded 1.6 times as much starch and produced 1.7 times as much hydrogen and 1.6 times as much ethanol compared with cells grown under white light during 12 h of dark anaerobic fermentation.  相似文献   
149.
The contents of the structural channels of beryl, grown hydrothermally from an ammonium-containing solution, were investigated by IR and EPR spectroscopy. Using IR spectroscopy we found that water molecules, ammonium ions, and a small number of HCl molecules enter the structural channels of beryl in the course of mineral growth. In these beryls, the ammonium ions play the role of alkali cations. The ammonium ions are as rigidly fixed in the lattice as are water molecules; they are eliminated by calcination at high temperatures close to the decomposition temperature. On exposure to radiation at 77 K, the paramagnetic NH 3 + and H0 radicals are stabilized in the structural channels of beryl. In addition to the known H0 radical, other states of atomic hydrogen, interacting with medium protons, are observed as well. For one of the additional radicals, Hb, we suggest the model of atomic hydrogen stabilized at the center of a silicon-oxygen ring with two water molecules in adjacent cavities.  相似文献   
150.
Pt3Co核-Pt壳型纳米粒子的制备及磁性   总被引:1,自引:1,他引:1  
Pt3Co alloy nanoparticles were prepared by the reduction of H2PtCl6 and Co(OOCCH3)2 using NaBH4 as a reducing agent. The Pt3Co core-Pt shell nanoparticles (Pt3Co@Pt) were synthesized using hydrogen absorption reduction and characterized by plasma-atomic emission spectrometry (ICP), transmission electron microscopy (TEM), X-ray diffraction (XRD) and SQUID magnetometer. The results show that average size of Pt3Co@Pt nanoparticles is 3.6 nm with a standard deviation of 0.9 nm. Heating Pt3Co nanoparticles in air at 700 ℃ for 1 h, Co in Pt3Co nanoparticles was oxidized to Co3O4 and CoO; while no oxidation tendency was detected for Pt3Co@Pt nanoparticles. The crystallize structure of Pt3Co@Pt changed from the face centered cube (fcc) to the face centered tetragonal (fct) after the heating treatment. The coercivity of the heated Pt3Co@Pt reached to 276 Oe at room temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号