首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10431篇
  免费   1169篇
  国内免费   1351篇
化学   10723篇
晶体学   365篇
力学   65篇
综合类   44篇
数学   14篇
物理学   1740篇
  2024年   111篇
  2023年   170篇
  2022年   394篇
  2021年   498篇
  2020年   696篇
  2019年   617篇
  2018年   386篇
  2017年   358篇
  2016年   539篇
  2015年   559篇
  2014年   579篇
  2013年   966篇
  2012年   605篇
  2011年   511篇
  2010年   473篇
  2009年   521篇
  2008年   554篇
  2007年   615篇
  2006年   557篇
  2005年   550篇
  2004年   483篇
  2003年   402篇
  2002年   264篇
  2001年   195篇
  2000年   202篇
  1999年   168篇
  1998年   149篇
  1997年   145篇
  1996年   137篇
  1995年   126篇
  1994年   71篇
  1993年   61篇
  1992年   53篇
  1991年   25篇
  1990年   25篇
  1989年   20篇
  1988年   24篇
  1987年   24篇
  1986年   19篇
  1985年   21篇
  1984年   10篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1977年   7篇
  1976年   6篇
  1975年   7篇
  1974年   6篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
121.
Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I3? ion in relation to X‐ray photoelectron spectroscopy (XPS). Simulations show that hydrogen‐bond rearrangement in the solvation shell is coupled to intramolecular bond‐length asymmetry in the I3? ion. By a combination of charge analysis and I 4 d core‐level XPS measurements, the mechanism of the solvent‐induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent‐dependent structure of the I3? ion, and the geometric structure has been correlated with the electronic structure.  相似文献   
122.
The isomorphous partial substitution of Zn2+ ions in the secondary building unit (SBU) of MFU‐4l leads to frameworks with the general formula [MxZn(5–x)Cl4(BTDD)3], in which x≈2, M=MnII, FeII, CoII, NiII, or CuII, and BTDD=bis(1,2,3‐triazolato‐[4,5‐b],[4′,5′‐i])dibenzo‐[1,4]‐dioxin. Subsequent exchange of chloride ligands by nitrite, nitrate, triflate, azide, isocyanate, formate, acetate, or fluoride leads to a variety of MFU‐4l derivatives, which have been characterized by using XRPD, EDX, IR, UV/Vis‐NIR, TGA, and gas sorption measurements. Several MFU‐4l derivatives show high catalytic activity in a liquid‐phase oxidation of ethylbenzene to acetophenone with air under mild conditions, among which Co‐ and Cu derivatives with chloride side‐ligands are the most active catalysts. Upon thermal treatment, several side‐ligands can be transformed selectively into reactive intermediates without destroying the framework. Thus, at 300 °C, CoII‐azide units in the SBU of Co‐MFU‐4l are converted into CoII‐isocyanate under continuous CO gas flow, involving the formation of a nitrene intermediate. The reaction of CuII‐fluoride units with H2 at 240 °C leads to CuI and proceeds through the heterolytic cleavage of the H2 molecule.  相似文献   
123.
Herein we report a new ammoniation‐based chemical modification strategy for synthesis of continuous and uniform metal–organic framework (MOF)/polyvinylidene fluoride (PVDF) membranes with attractive performance. Ammoniation can promote the support PVDF membrane to produce amino groups, form a nanoparticle structure, and be well cross‐linked; therefore, the high‐density heterogeneous nucleation sites for MOFs growth were provided and the thermal stability and chemical resistance of composite membranes can be greatly improved. The high‐quality layers of representative Cu‐BTC and ZIF‐8 were synthesized on the chemically modified PVDF membranes. By ammoniation, ZIF‐7 can even be grown under harsh synthetic conditions such as in DMF precursor solutions at 403 K. The fabricated MOF/PVDF composite membranes with excellent hollow fiber structures and enhanced structural stability exhibited high H2 permselectivities for H2/CO2 and H2/N2.  相似文献   
124.
A strategy for the enantioselective [2+2] photocycloaddition of isoquinolones with alkenes is presented, in which the formation of a supramolecular complex between a chiral template and the substrate ensures high enantioface differentiation by shielding one face of the substrate. Fifteen different electron‐deficient alkenes and ten different substituted isoquinolones undergo efficient photocycloaddition, yielding the cyclobutane products in excellent yields and with outstanding regio‐, diastereo‐ and enantioselectivities (up to 99 % ee). The mechanism of the reaction is investigated by means of triplet sensitization/quenching and radical clock experiments, the results of which are consistent with the involvement of a triplet excited state and a 1,4‐biradical intermediate. The variety of functionalized cyclobutanes obtained using this approach can be further increased by straightforward synthetic transformations of the photoadducts, allowing rapid access to libraries of compounds for various applications.  相似文献   
125.
CuII‐macrocycle functionalized hexametaphosphate‐capped silica mesoporous nanoparticles have been prepared and used for the selective and sensitive detection of hydrogen sulfide in aqueous environments. The possibility of using different metal complexes combined with different capping anions and choice of different dyes or other sensing molecules as indicators makes this new protocol highly appealing for the preparation of new sensing systems for sulfide detection in different environments.  相似文献   
126.
Asymmetric transfer hydrogenation (ATH) is an important process in organic synthesis for which the Noyori‐type RuII catalysts [(arene)Ru(Tsdiamine)] are now well established and widely used. We now demonstrate for the first time the catalytic activity of the osmium analogues. X‐ray crystal structures of the 16‐electron OsII catalysts are almost identical to those of RuII. Intriguingly the precursor complex was isolated as a dichlorido complex with a monodentate amine ligand. The OsII catalysts are readily synthesised (within 1 h) and exhibit excellent enantioselectivity in ATH reactions of ketones.  相似文献   
127.
A newly synthesized one‐dimensional (1D) hydrogen‐bonded (H‐bonded) rhodium(II)–η5‐semiquinone complex, [Cp*Rh(η5p‐HSQ‐Me4)]PF6 ([ 1 ]PF6; Cp*=1,2,3,4,5‐pentamethylcyclopentadienyl; HSQ=semiquinone) exhibits a paraelectric–antiferroelectric second‐order phase transition at 237.1 K. Neutron and X‐ray crystal structure analyses reveal that the H‐bonded proton is disordered over two sites in the room‐temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6? ion. The relative permittivity εb′ along the H‐bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of 13C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low‐temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10?4–10?6 s in the temperature range of 240–270 K. DFT calculations predict that the protonation/deprotonation of [ 1 ]+ leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π‐bonded rhodium fragment, producing the stable η6‐hydroquinone complex, [Cp*Rh3+6p‐H2Q‐Me4)]2+ ([ 2 ]2+), and η4‐benzoquinone complex, [Cp*Rh+4p‐BQ‐Me4)] ([ 3 ]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [ 2 ]2+ and [ 3 ], which would be generated in the H‐bonded chain.  相似文献   
128.
An electron dynamics mechanism of charge separation in the initial stage of excited‐state reactions of the class of X?Mn?OH2???A${ \to }$ X?Mn?OH???HA (X=OH or OCaH; A=N‐methylformamidine, guanidine, imidazole, or ammonia cluster) is reported. The dynamic effect of calcium doping is also revealed. This study provides a novel factor to be considered in designing efficient systems for photoinduced water splitting.  相似文献   
129.
Understanding both structure and dynamics is crucial for producing tailor‐made ionic liquids (ILs). We studied the vibrational and structural dynamics of medium versus weakly hydrogen‐bonded C?H groups of the imidazolium ring in ILs of the type [1‐alkyl‐3‐methylimidazolium][bis(trifluoromethanesulfonyl)imide] ([Cnmim][NTf2]), with n=1, 2, and 8, by time‐resolved coherent anti‐Stokes Raman scattering (CARS) and quantum‐classical hybrid (QCH) simulations. From the time series of the CARS spectra, dephasing times were extracted by modeling the full nonlinear response. From the QCH calculations, pure dephasing times were obtained by analyzing the distribution of transition frequencies. Experiments and calculations reveal larger dephasing rates for the vibrational stretching modes of C(2)?H compared with the more weakly hydrogen‐bonded C(4,5)?H. This finding can be understood in terms of different H‐bonding motifs and the fast interconversion between them. Differences in population relaxation rates are attributed to Fermi resonance interactions.  相似文献   
130.
To analyze the H/D isotope effects on hydrogen transfer reactions in XHCHCHCHY?XCHCHCHYH (X, Y=O, NH, or CH2) including the nuclear quantum effect of proton and deuteron, we propose a multicomponent molecular orbital‐climbing image‐nudged elastic band (MC_MO–CI–NEB) method. We obtain not only transition state structures but also minimum‐energy paths (MEPs) on the MC_MO effective potential energy surface by using MC_MO–CI–NEB method. We find that nuclear quantum effect affects not only stationary‐point geometries but also MEPs and electronic structures in the reactions. We clearly demonstrate the importance of including nuclear quantum effects for H/D isotope effect on rate constants (kH/kD).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号