首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1764篇
  免费   165篇
  国内免费   620篇
化学   2012篇
晶体学   9篇
力学   99篇
综合类   15篇
数学   40篇
物理学   374篇
  2024年   7篇
  2023年   25篇
  2022年   82篇
  2021年   75篇
  2020年   107篇
  2019年   96篇
  2018年   83篇
  2017年   83篇
  2016年   98篇
  2015年   92篇
  2014年   131篇
  2013年   162篇
  2012年   134篇
  2011年   191篇
  2010年   113篇
  2009年   158篇
  2008年   145篇
  2007年   154篇
  2006年   121篇
  2005年   110篇
  2004年   91篇
  2003年   78篇
  2002年   41篇
  2001年   30篇
  2000年   23篇
  1999年   20篇
  1998年   18篇
  1997年   20篇
  1996年   10篇
  1995年   8篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   8篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1986年   3篇
  1985年   4篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1959年   1篇
  1957年   1篇
排序方式: 共有2549条查询结果,搜索用时 46 毫秒
81.
The anion exchange membranes (AEMs) with both high ionic conductivity and alkali stability are always the research focus of the AEM fuel cells. Here, a novel nonplanar polymer for AEMs manufacture, mPBI‐TP‐x‐R, with excellent hydroxide stability and satisfactory processability is reported for the first time. The serial mPBI‐TP‐x resins with steric hindrance were prepared by copolymerization among 3,3′,4,4′‐tetraaminobiphenyl, isophthalic acid and tetraphenyl‐terephthalic acid (TP) in different ratios under microwave condensation. The copolymers mPBI‐TP‐x were quaternized at N1/N3‐sites of benzimidazole unit in backbone with alkyl groups (R?CH3, C2H5, n‐C3H7, or n‐C4H9) to prepare soluble ionomers, and the corresponding membranes in hydroxyl ion form were prepared by a solution casting method and subsequent ion‐exchange process. The chemical structure of all membranes was characterized using FTIR and 1H NMR spectroscopy. The properties of ion exchange capacity, water uptake, swelling ratio, tensile strength, ionic conductivity, and alkaline stability were measured. Among the prepared membranes, the mPBI‐TP‐15%‐(n‐Bu) exhibited the excellent alkaline stability (only degradation ca. 5% under 1M NaOH aqueous solution at 60 °C for 800 h) and satisfactory OH? conductivity (46.66 mS/cm at 80 °C). The current research provides a useful exploration to commercial application of alkaline fuel cell. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1087–1096  相似文献   
82.
Insoluble sludge is generated in the reprocessing of spent fuel. The sludge obtained from the dissolution of irradiated fuel from the “Joyo” experimental fast reactor was analyzed to evaluate its chemical form. The sludge was collected by the filtration of the dissolved fuel solution, and then washed in nitric acid. The yields of the sludge weight were less than 1% of the total fuel weight. The chemical composition of the sludge was analyzed after decomposition by alkaline fusion. Molybdenum, technetium, ruthenium, rhodium, and palladium were found to be the main constituent elements of the sludge. X-ray diffraction patterns of the sludge were attributable to Mo4Ru4RhPd, regardless of the experimental conditions. The concentrations of molybdenum and zirconium in the dissolved fast reactor fuel solutions were low, indicating that zirconium molybdate hydrate is produced in negligible amounts in the process.  相似文献   
83.
Wesentliche Bedeutung für die Strahlenausnutzung in γ-Bestrahlungsanlagen mit Reaktorbrennelementen hat die Quellenform, wobei der besonderen Quelldichteverteilung Rechnung zu tragen ist. Es wurden Bewertungskenngröβen abgeleitet, mit deren Hilfe Optimalvarianten der Quellenform für verschiedene Bestrahlgutbedingungen bestimmt werden können. Für fünf Quellen-grundformen sind Formeln zur Berechnung der Strahlenfelder angegeben. Mit Hilfe der ermittelten Kenngröβen wurden die verschiedensten Quellenformen verglichen. Die hieraus abgeleiteten Optimalbedingungen sind abschlieβend zusammengefaβt.  相似文献   
84.
Water transport is critical to the successful implementation of polymer electrolyte fuel cells (PEFC), especially in long-term and dynamic operation in automotives. Liquid water appears in the fuel cells not only from the water generated at the cathode catalyst layer but also as a result of condensation of water vapor from the humidified gases. In this study, we report a simple approach to prepare a superhydrophobic gas diffusion layer by chemical vapor deposition of polydimethylsiloxane without significant change in pore size of gas diffusion layer unlike other approach adding hydrophobic agent such as polytetrafluoroethylene. A superhydrophobic coating on the GDL can be obtained, leading to exceptionally enhanced power performance and stability of PEFC especially at a high current where water transport becomes more critical.  相似文献   
85.
This paper describes the development of a lattice Boltzmann (LB) model for a binary gas mixture, and applications to channel flow driven by a density gradient with diffusion slip occurring at the wall. LB methods for single component gases typically use a non‐physical equation of state in which the relationship between pressure and density varies according to the scaling used. This is fundamentally unsuitable for extension to multi‐component systems containing gases of differing molecular masses. Substantial variations in the species densities and pressures may exist even at low Mach numbers; hence, the usual linearized equation of state for small fluctuations is unsuitable. Also, existing methods for implementing boundary conditions do not extend easily to novel boundary conditions, such as diffusion slip. The new model developed for multi‐component gases avoids the pitfalls of some other LB models. A single computational grid is shared by all the species, and the diffusivity is independent of the viscosity. The Navier–Stokes equation for the mixture and the Stefan–Maxwell diffusion equation are both recovered by the model. Diffusion slip, the non‐zero velocity of a gas mixture at a wall parallel to a concentration gradient, is successfully modelled and validated against a simple one‐dimensional model for channel flow. To increase the accuracy of the scheme, a second‐order numerical implementation is needed. This may be achieved using a variable transformation method that does not increase the computational time. Simulations were carried out on hydrogen and water diffusion through a narrow channel for varying total pressure and concentration gradients. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
86.
The preparation and characterization of a new type of nanocomposite polyelectrolyte membrane, based on DuPont Nafion/imidazole-modified nanosilica (Im-Si), for direct methanol fuel cell applications is described. Related to the interactions between the protonated imidazole groups, grafted on the surface of nanosilica, and negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of Nafion and Im-Si which result in both lower methanol permeability and also higher proton conductivity. Physical characteristics of these manufactured nanocomposite membranes were investigated by scanning electron microscopy, thermogravimetry analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion-exchange capacity, as well as proton conductivity. The Nafion/Im-Si membranes showed higher proton conductivity, lower methanol permeability and, as a consequence, higher selectivity parameter in comparison to the neat Nafion or Nafion/silica membranes. The obtained results indicated that the Nafion/Im-Si membranes could be utilized as promising polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   
87.
Abstract

Chitosan (CS) is being used for fabrication of low cost, biocompatible materials that have applicability in fields such as agriculture, biotechnology and environment. In Environmental research, one of the applications of CS based hydrogel composites are in form of biosorbents for eviction of toxic dyes, heavy metals and nutrients from effluent streams. The adsorption potential could be attributed to the reactive functional groups existing on the surface of CS. CS based materials can also be employed for oil/water separation, as a fertilizer carrier, in Microbial fuel cells as Electrolyte membrane and as Electrochemical/Biosensors for detecting and analyzing few environmental pollutants such as pesticides. The earlier review papers on the subject matter have concentrated mainly on dye and heavy metal removal without giving details of its utility in the field of electrochemistry and agriculture. Though the biopolymer holds numerous applications, it has not been discussed extensively. Thus, an attempt has been made to elucidate the current and potential applications of CS hydrogels and composites based on the efficacy it has shown in areas of removal of organic and inorganic contaminants such as dyes, heavy metals and nutrients, in agriculture, oil and water separation, Microbial Fuel cells and Electrochemical/Biosensors.
  • HIGHLIGHTS
  • Chitosan based hydrogel composites could be extensively used in the field of Environment Technology.

  • The composites act as effective biosorbents for dye, heavy metal and nutrient removal because of the functional groups present on Chitosan’s surface.

  • These can also be effectively used for oil/water separation and also as a fertilizer/pesticide carrier for their slow release.

  • Chitosan based electrolytes can become a promising ecofriendly substitute for synthetic polymers in fuel cells.

  • These biopolymers have also been researched upon as electrochemical/biosensors in recent years for detecting environmental pollutants.

  相似文献   
88.
Advances in chemical syntheses have led to the formation of various kinds of nanoparticles (NPs) with more rational control of size, shape, composition, structure and catalysis. This review highlights recent efforts in the development of Pt and non‐Pt based NPs into advanced nanocatalysts for efficient oxygen reduction reaction (ORR) under fuel‐cell reaction conditions. It first outlines the shape controlled synthesis of Pt NPs and their shape‐dependent ORR. Then it summarizes the studies of alloy and core–shell NPs with controlled electronic (alloying) and strain (geometric) effects for tuning ORR catalysis. It further provides a brief overview of ORR catalytic enhancement with Pt‐based NPs supported on graphene and coated with an ionic liquid. The review finally introduces some non‐Pt NPs as a new generation of catalysts for ORR. The reported new syntheses with NP parameter‐tuning capability should pave the way for future development of highly efficient catalysts for applications in fuel cells, metal‐air batteries, and even in other important chemical reactions.  相似文献   
89.
采用EDTA-柠檬酸盐法制备了(Pr0.9La0.12(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG),并与Ce0.9Gd0.1O2-δ(CGO)形成复合阴极PLNCG-CGO。XRD和SEM分析结果表明PLNCG与CGO在1 000℃具有较好的化学相容性。电化学阻抗测试结果表明PLNCG-30% CGO复合阴极在700℃的极化电阻为0.092 Ω·cm2;过电位为39.3 mV时,电流密度达到113.3 mA·cm-2。氧分压分析表明电极反应的速率控制步骤为电荷转移过程。阳极支撑单电池(Ni-CGO/CGO/PLNCG-30% CGO)在700℃的最大输出功率密度达到569 mW·cm-2,开路电压(OCV)为0.76 V。综上结果预示PLNCG-30% CGO复合阴极是一种有发展前景的电极材料。  相似文献   
90.
为提高PtCo/C合金催化剂的电化学性能,采用微波法合成铂钴锰催化剂前驱体,经高温热处理形成合金,最后通过酸处理得到铂钴锰合金催化剂(PtCoMn/C)。电化学测试结果表明:适量锰的添加可提升PtCo/C催化剂的活性和耐久性。PtCoMn/C催化剂在 0.9 V(vs RHE)电压下的质量比活性(MA)达到 0.666 A·mgPt-1,是传统 Pt/C 的 2.66 倍,是 PtCo/C 催化剂的 1.30 倍。在30 000圈催化剂加速耐久性测试中,PtCoMn/C合金催化剂的电化学活性面积(ECSA)和质量比活性(MA)仅下降6.9%和27.1%,均远低于Pt/C催化剂。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号