首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   347篇
  免费   46篇
  国内免费   44篇
化学   335篇
力学   7篇
综合类   13篇
数学   15篇
物理学   67篇
  2024年   1篇
  2023年   7篇
  2022年   17篇
  2021年   15篇
  2020年   15篇
  2019年   16篇
  2018年   7篇
  2017年   11篇
  2016年   13篇
  2015年   14篇
  2014年   14篇
  2013年   15篇
  2012年   29篇
  2011年   28篇
  2010年   26篇
  2009年   21篇
  2008年   35篇
  2007年   33篇
  2006年   21篇
  2005年   17篇
  2004年   16篇
  2003年   10篇
  2002年   17篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有437条查询结果,搜索用时 15 毫秒
151.
The multiparametric nature of nanoparticle self‐assembly makes it challenging to circumvent the instabilities that lead to aggregation and achieve crystallization under extreme conditions. By using non‐base‐pairing DNA as a model ligand instead of the typical base‐pairing design for programmability, long‐range 2D DNA–gold nanoparticle crystals can be obtained at extremely high salt concentrations and in a divalent salt environment. The interparticle spacings in these 2D nanoparticle crystals can be engineered and further tuned based on an empirical model incorporating the parameters of ligand length and ionic strength.  相似文献   
152.
We present an electrokinetic technique to increase the reaction rate and sensitivity of bead‐based assays. We use isotachophoresis (ITP) to preconcentrate and co‐focus target molecules and beads into a single ITP zone. The process achieves rapid mixing, stirring, and strongly increases the binding reaction rate. We demonstrate our assay with quantitative detection of 24 nt single‐stranded DNA over a dynamic range of three orders of magnitude and multiplexed detection of ten target species per sample. We show that ITP can achieve approximately the same sensitivity as a well‐stirred standard reaction in 60‐fold reduced reaction time (20 min versus 20 h). Alternately, compared to standard reaction times of 30 min, we show that 20 min ITP hybridization can achieve 5.3‐fold higher sensitivity.  相似文献   
153.
The exocyclic amino groups of cytosine and adenine nucleobases are normally almost flat, with the N atoms essentially sp2 hybridized and the lone pair largely delocalized into the heterocyclic rings. However, a change to marked pyramidality of the amino group (N then sp3 hybridized, lone pair essentially localized at N) occurs during i) involvement of an amino proton in strong hydrogen bonding donor conditions or ii) with monofunctional metal coordination following removal of one of the two protons.  相似文献   
154.
155.
156.
157.
This research involves the preparation of a biosensor using silicon oxide for biomedical applications, and its effective use for the detection of target DNA hybridization. An electrochemical DNA biosensor was successfully fabricated by using(3-aminopropyl) tri-ethoxysilane(APTES) as a linker molecule combined with gold nanoparticles(GNPs) on a thermally oxidized SiO_2 thin film. The size of the GNPs was calculated by utilizing UV–vis data with an average calculated particle size within the range of 30±5 nm, and characterization by transmission electron microscopy(TEM) and atomic force microscopy(AFM). The GNP-modified SiO_2 thin films were electrically characterized through the measurement of capacitance, permittivity and conductivity using a low-cost dielectric analyzer. The capacitance, permittivity and conductivity profiles of the fabricated sensor clearly differentiated DNA immobilization and hybridization.  相似文献   
158.
The electrochemical behavior of aquabis(1,10‐phenanthroline)copper(II) perchlorate [Cu(H2O)(phen)2]·2ClO4, where phen=1,10‐phenanthroline, on binding to DNA at a glassy carbon electrode (GCE) and in solution, was described. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) results showed that [Cu(H2O)(phen)2]2+ had excellent electrochemical activity on the GCE with a couple of quasi‐reversible redox peaks. The interaction mode between [Cu(H2O)(phen)2]2+ and double‐strand DNA (dsDNA) was identified to be intercalative binding. An electrochemical DNA biosensor was developed with covalent immobilization of human immunodeficiency virus (HIV) probe for single‐strand DNA (ssDNA) on the modified GCE. Numerous factors affecting the probe immobilization, target hybridization, and indicator binding reactions were optimized to maximize the sensitivity and speed of the assay. With this approach, a sequence of the HIV could be quantified over the range from 7.8×10?9 to 3.1×10?7 mol·L?1 with a linear correlation of γ=0.9987 and a detection limit of 1.3×10?9 mol·L?1.  相似文献   
159.
A sensitive electrochemical method for the detection of DNA hybridization based on the probe labeled with multiwall carbon‐nanotubes (MWNTs) loaded with silver nanoparticles (Ag‐MWNTs) has been developed. MWNTs were electroless‐plated with a large number of silver nanoparticles to form Ag‐MWNTs. Probe single strand DNA (ss‐DNA) with a thiol group at the 3′‐terminal labeled with Ag‐MWNTs by self‐assembled monolayer (SAM) technique was employed as an electrochemical probe. Target ss‐DNA with a thiol group was immobilized on a gold electrode by SAM technique and then hybridized with the electrochemical probe. Binding events were monitored by differential pulse voltammetric (DPV) signal of silver nanoparticles. The signal difference permitted to distinguish the match of two perfectly complementary DNA strands from the near perfect match where just three base pairs were mismatched. There was a linear relation between the peak current at +120 mV (vs. SCE) and complementary target ss‐DNA concentration over the range from 3.1×10?14 to 1.0×10?11 mol/L with a detection limit of 10 fmol/L of complementary target ss‐DNA. The proposed method has been successfully applied to detection of the DNA sequence related to cystic fibrosis. This work demonstrated that the MWNTs loaded with silver nanoparticles offers a great promising approach for sensitive detection of DNA hybridization.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号