首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   46篇
  国内免费   44篇
化学   334篇
力学   7篇
综合类   13篇
数学   15篇
物理学   67篇
  2024年   1篇
  2023年   7篇
  2022年   16篇
  2021年   15篇
  2020年   15篇
  2019年   16篇
  2018年   7篇
  2017年   11篇
  2016年   13篇
  2015年   14篇
  2014年   14篇
  2013年   15篇
  2012年   29篇
  2011年   28篇
  2010年   26篇
  2009年   21篇
  2008年   35篇
  2007年   33篇
  2006年   21篇
  2005年   17篇
  2004年   16篇
  2003年   10篇
  2002年   17篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1984年   1篇
排序方式: 共有436条查询结果,搜索用时 31 毫秒
121.
A non-empirical quantum chemical calculation of isomeric 3,6-divinyl-3,4,5,6-tetrahydropyrrolo[3,2-e] indole 1 and 1,5-divinyl-1,4,5,8-tetrahydro[3,2-f]indole 2 structures carried out by DFT (B3LYP) method with 6-311++G(d, p) and 6-311++G(3df, p) basis sets showed the energy preference of 2 over 1 (1.33 kcal/mol and 1.47 kcal/mol, respectively). The structure of the molecule of 2 is planar while the molecule of 1 is non-planar due to the presence of sp 3-hybridized carbon atoms.  相似文献   
122.
The design of nucleic acid sequences for a highly specific and efficient hybridization is a crucial step in DNA computing and DNA‐based nanotechnology applications. The CANADA package contains software tools for designing DNA sequences that meet these and other requirements, as well as for analyzing and handling sequences. CANADA is freely available, including a detailed manual and example input files, at http://ls11‐www.cs.uni‐dortmund.de/molcomp/downloads . © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
123.
Through integrative consideration of NICS, MO, MOC and NBO, we precisely investigated delocalization and bonding characters of C6, C6H6, B3N3 and B3N3H6 molecules. Firstly, we originally discovered and testified that C6 cluster was sp2 hybridization. Negative NICS values in 0 and 1 Å indicated that C6 had δ and Π aromaticity. Secondly, B3N3 with sp2 hybridization had obvious δ aromaticity. Finally, WBI values approved that there were delocalization in C6, C6H6 and B3N3 molecules, but B3N3H6 structure did not have delocalization with the WBI 1.0. Moreover, total WBI values of carbon, boron and nitrogen atoms were four, three and three, respectively. Namely, the electrons of B3N3H6 and B3N3 were localized in nitrogen atoms and they did not form delocalized bonding. In a word, bonding characters of carbon, boron and nitrogen atoms were dissimilar although the molecules composed of carbon, boron and nitrogen were regarded as isoelectronic structures.  相似文献   
124.
125.
Electrocatalytic oxidation of guanine in DNA was detected at tin-doped indium oxide electrodes modified with nylon and nitrocellulose polymers. The catalytic oxidation occurs via oxidation at the electrode of the complex Ru(bpy) 3 2+ to the 3+ state, which is then reduced back to the 2+ state by guanine in DNA (bpy = 2,2-bipyridine). Catalysis is observed as a current enhancement in the cyclic voltammogram of Ru(bpy) 3 2+ when DNA is immobilized in the film. As seen in solution, the catalytic enhancement in the nitrocellulose film is lower at 800 mM NaCl than without added salt because electrostatic binding of the Ru(bpy) 3 2+ to the DNA at low salt increases the catalytic rate constant. The cyclic voltammogram of Os(bpy) 3 2+ , which does not oxidize guanine, exhibits less current in the presence of DNA because binding to the immobilized DNA precludes communication of the metal complex with the electrode. Electrodes modified with poly[C] gave no enhancement; however, catalytic current was observed upon hybridization to poly[G]. Exposure of the poly[C] electrode to random single-stranded DNA gave no catalytic current. Glassy carbon electrodes modified with the membranes behaved in a manner similar to that of the metal oxide electrodes.  相似文献   
126.
In most of the currently developed electrochemical DNA hybridization sensors short single-stranded probe DNA is immobilized on an electrode and both the hybridization and detection steps are carried out on the electrode surface. Here we use a new technology in which DNA hybridization is performed on commercially available magnetic beads and detection on solid electrodes. Paramagnetic Dynabeads Oligo(dT)25 (DBT) with covalently bound (dT)25 probe are used for the hybridization with target DNA containing adenine stretches. Target DNA is modified with osmium tetroxide,2,2′-bipyridine (Os,bipy) and the immunogenic DNA-Os,bipy adduct is determined by the enzyme-linked immunoassay with electrochemical detection. Electroinactive 1-naphthyl phosphate is used as a substrate and the electroactive product (1-naphthol) is measured on the carbon electrodes. Alternatively Os,bipy-modified target DNA can be determined directly by measuring the osmium signal on the pyrolytic graphite electrode (PGE). A comparison between determinations of the 67-mer oligodeoxynucleotide on carbon electrodes using (a) the guanine oxidation signal, (b) direct determination of the DNA-Os,bipy adduct and (c) its electrochemical immunoassay showed immunoassay to be the most sensitive method. In combination with DBT, the DNA hybridization of long target deoxyoligonucleotides (such as 67- and 97-mers) and a DNA PCR product (226-base pairs) have been detected by immunoassay at high sensitivity and specificity.  相似文献   
127.
128.
A microfluidic biosensor based on nucleic acid sequence recognition   总被引:2,自引:0,他引:2  
The development of a generic semi-disposable microfluidic biosensor for the highly sensitive detection of pathogens via their nucleic acid sequences is presented in this paper. Disposable microchannels with defined areas for capture and detection of target pathogen RNA sequence were created in polydimethylsiloxane (PDMS) and mounted onto a reusable polymethylmethacrylate (PMMA) stand. Two different DNA probes complementary to unique sequences on the target pathogen RNA serve as the biorecognition elements. For signal generation and amplification, one probe is coupled to dye encapsulated liposomes while the second probe is coupled to superparamagnetic beads for target immobilization. The probes hybridize to target RNA and the liposome–target-bead complex is subsequently captured on a magnet. The amount of liposomes captured correlates directly to the concentration of target sequence and is quantified using a fluorescence microscope. Dengue fever virus serotype 3 sequences and probes were used as a model analyte system to test the sensor. Probe binding and target capture conditions were optimized for sensitivity resulting in a detection limit of as little as 10 amol L–1 (10 pmol L–1) . Future biosensors will be designed to incorporate a mixer and substitute the fluorescence detection with an electrochemical detection technique to provide a truly portable microbiosensor system.  相似文献   
129.
In a recent publication [C. A. Nicolaides and Y. Komninos, Int. J. Quant. Chem. 67 , 321 (1998)], we proposed that in certain classes of molecules the fundamental reason for the formation of covalent polyatomic molecules in their normal shape is to be found in the existence of a geometrically active atomic state (GAAS) of the central atom, whose shape, together with its maximum spin‐and‐space coupling to the ligands, predetermines the normal molecular shape (NMS). The shape of any atomic state was defined as that which is deduced from the maxima of the probability distribution ϱ(cos θ12) of the angle formed by the position vectors of two electrons of an N‐electron atom. Because the shape of the GAAS determines the NMS and because the NMS allows the construction of corresponding hybrid orbitals, we examined and discovered the connection between the GAAS shape and Pauling's function for the strength of two equivalent orthogonal orbitals at angle θ12 with one another. It is shown that the computed ϱ(cos θ12) of the GAAS can be cast in a form which allows the deduction of the composition of the hybrid orbitals of maximum spin states with configurations sp3, sp3d5, sp3d5f7, sln, s2ln and the demonstration of the central atom's tendency to form bonds in directions which coincide with the nodal cones of the hybrid bond orbitals. These results not only reinforce the validity of the theory as to the fundamental “mechanism” for the formation in the normal shape of coordination compounds and covalently bonded polyatomic molecules, but also provide the justification for the relevance and importance of the hybridization model. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 71: 25–34, 1999  相似文献   
130.
Supramolecular aggregates of DNA, RNA, streptavidin, immunoglobulin, and nanocrystalline metal clusters can be generated by self-assembly on the basis of oligonucleotide hybridization (shown schematically). Following selective immunosorption on surface-immobilized antigen, the biometallic hybrid is detectable by electron microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号