The electrocatalytic nitrate-to-ammonia reduction reaction route (NARR) is one of the emerging routes toward green ammonia synthesis, and its conversion efficiency is controlled mainly by the hydrogenation selectivity. This study proposed a likely NARR route feasible and effective even in a neutral condition. Its high catalytic selectivity and efficiency were achieved by a switch of the sulfate solution to the phosphate buffer solution (PBS), while conditions of NO3− concentration, pH, and applied potential were maintained unchanged. Specifically, the faradaic efficiencies toward NH3 (FE ) in Na2SO4 were as low as 9.8, 19.8, and 11.4 % versus remarkably jumping to 82.8, 90.5, and 89.5 % in PBS under −0.75, −1.0, and −1.25 V, respectively. The corresponding faradaic efficiencies toward NO2− (FE ), 77.0, 69.2, and 73.7 % in Na2SO4, significantly dropped to10.8, 7.4, and 4.4 % in PBS, evidencing an unexpected selectivity reversal of the nitrate reduction from NO2− to NH3. This insight was further revealed by the visualization of the pH gradient near the electrode surface during NARR and confirmed by density functional theory calculations; PBS notably facilitated the proton transport and active mitigation over the proton transfer barrier. The use of PBS resulted in a maximal partial current density toward NH3 (J ) and NH3 formation rate (r ) up to 133.5 mA cm−2 and 1.74×10−7 mol s−1 cm−2 in 1.0 m KNO3 at −1.25 V. 相似文献
Machine learning (ML) has widespread applications in catalyst discovery and reaction optimization. We present a theory-guided machine learning framework to evaluate the carbon monoxide (CO) conversion performance of noble metal catalysts in water-gas shift (WGS) reaction. Our study is based on an open source WGS dataset, which we modify significantly to be consistent with the chemical reaction principles. We apply state-of-the-art ML models including artificial neural networks, extreme gradient boosting to predict CO conversion percentage. These models show superior regression performance than the previously reported results in the literature. We further generalize the existing data structure by including physical, chemical and surface chemistry properties as fingerprint features that rationalize the importance of all the input features for CO conversion. We noticed that purely data-driven ML models frequently violate the thermodynamic equilibrium principle and predict unphysical CO conversion percentage. We address these two problems by developing a custom loss function and an additional activation function in our neural networks architecture. Our proposed theory-guided ML model displays high accuracy (R2 score is 0.95 and root mean square error is 6.87) and physically robust predictions. The model also opens up promising possibilities to improve CO conversion percentage, which were previously unexplored in experiments. 相似文献
A buckling model of Timoshenko micro-beam with local thickness defects is established based on a modified gradient elasticity. By introducing the local thickness defects function of the micro-beam, the variable coe-cient differential equations of the buckling problem are obtained with the variational principle. Combining the eigensolution series of the complete micro-beam with the Galerkin method, we obtain the critical load and buckling modes of the micro-beam with defects. The results show that the depth and location of the defect are the main factors affecting the critical load, and the combined effect of boundary conditions and defects can significantly change the buckling mode of the micro-beam. The effect of defect location on buckling is related to the axial gradient of the rotation angle, and defects should be avoided at the maximum axial gradient of the rotation angle. The model and method are also applicable to the static deformation and vibration of the micro-beam. 相似文献
In this study, the wave propagation properties of piezoelectric sandwich nanoplates deposited on an orthotropic viscoelastic foundation are analyzed by considering the surface effects (SEs). The nanoplates are composed of a composite layer reinforced by graphene and two piezoelectric surface layers. Utilizing the modified Halpin-Tsai model, the material parameters of composite layers are obtained. The displacement field is determined by the sinusoidal shear deformation theory (SSDT). The Euler-Lagrange equation is derived by employing Hamilton’s principle and the constitutive equations of piezoelectric layers considering the SEs. Subsequently, the nonlocal strain gradient theory (NSGT) is used to obtain the equations of motion. Next, the effects of scale parameters, graphene distribution, orthotropic viscoelastic foundation, and SEs on the propagation behavior are numerically examined. The results reveal that the wave frequency is a periodic function of the orthotropic angle. Furthermore, the wave frequency increases with the increase in the SEs.
The wavelet multiresolution interpolation for continuous functions defined on a finite interval is developed in this study by using a simple alternative of transformation matrix. The wavelet multiresolution interpolation Galerkin method that applies this interpolation to represent the unknown function and nonlinear terms independently is proposed to solve the boundary value problems with the mixed Dirichlet-Robin boundary conditions and various nonlinearities, including transcendental ones, in which the discretization process is as simple as that in solving linear problems, and only common two-term connection coefficients are needed. All matrices are independent of unknown node values and lead to high efficiency in the calculation of the residual and Jacobian matrices needed in Newton’s method, which does not require numerical integration in the resulting nonlinear discrete system. The validity of the proposed method is examined through several nonlinear problems with interior or boundary layers. The results demonstrate that the proposed wavelet method shows excellent accuracy and stability against nonuniform grids, and high resolution of localized steep gradients can be achieved by using local refined multiresolution grids. In addition, Newton’s method converges rapidly in solving the nonlinear discrete system created by the proposed wavelet method, including the initial guess far from real solutions.
In this paper, we study a theory of gravity called mimetic f(R, T) in the presence of swampland dS conjecture. For this purpose, we introduce several inflation solutions of the Hubble parameter H(N) from f(R, T) = R + δT gravity model, in which R is Ricci scalar, and T denotes the trace of the energy–momentum tensor. Also, δ and N are the free parameter and a number of e-fold, respectively. Then we calculate quantities such as potential, Lagrange multiplier, slow-roll, and some cosmological parameters such as ns and r. Then we challenge the mentioned inflationary model from the swampland dS conjecture. We discuss the stability of the model and investigate the compatibility or incompatibility of this inflationary scenario with the latest Planck observable data. 相似文献
Ruppeiner geometry has been successfully applied in the study of the black hole microstructure by combining with the small–large black hole phase transition, and the potential interactions among the molecular-like constituent degrees of freedom are uncovered. In this paper, we will extend the study to the triple point, where three black hole phases coexist acting as a typical feature of black hole systems quite different from the small–large black hole phase transition. For the six-dimensional charged Gauss–Bonnet anti-de Sitter black hole, we thoroughly investigate the swallow tail behaviors of the Gibbs free energy and the equal area laws. After obtaining the black hole triple point in a complete parameter space, we exhibit its phase structures both in the pressure–temperature and temperature–horizon radius diagrams. Quite different from the liquid–vapor phase transition, a double peak behavior is present in the temperature–horizon radius phase diagram. Then we construct the Ruppeiner geometry and calculate the corresponding normalized curvature scalar. Near the triple point, we observe multiple negatively divergent behaviors. Positive curvature scalar is observed for the small black hole with high temperature, which indicates that the repulsive interaction dominates among the microstructure. Furthermore, we consider the variation of the curvature scalar along the coexisting intermediate and large black hole curves. Combining with the observation for different fluids, the result suggests that this black hole system behaves more like the argon or methane. Our study provides a first and preliminary step towards understanding black hole microstructure near the triple point, as well as uncovering the particular properties of the Gauss–Bonnet gravity. 相似文献
Linear and nonlinear phenomena are investigated in toroidal ion temperature gradient (TITG)-driven pure drift mode. The model includes inhomogeneity in background magnetic field, ion temperature, and density. Finite Larmor radius effect is incorporated to understand the effect of low-frequency wave on ion dynamics. Electrons are assumed to follow nonthermal distribution, that is, kappa and Cairns distributions. Dispersion relation is obtained to analyse the linear behaviour of the TITG mode in the presence of non-Maxwellian electron distribution. In the nonlinear regime, exact solutions (soliton and shocks) are obtained (in dispersive and dissipative medium respectively) by using functional variable method to solve the nonlinear partial differential equation obtained for the system under consideration. Graphical illustrations are used to exhibit the characteristics of linear and nonlinear structures and their dependence on different physical parameters. It is observed that for TITG-driven pure drift mode, rarefactive solitons are formed for both thermal and nonthermal electron distributions. It is also observed that variation of electrons from standard thermal distribution affects the propagation characteristics of linear and nonlinear structures in TITG-driven modes. Results of our investigations will be helpful to understand the low-frequency waves in inhomogeneous plasmas in the presence of nonthermal electron distributions which are frequently observed by satellite missions and are also observed in laboratory plasmas. 相似文献
Proposed quantum experiments in deep space will be able to explore quantum information issues in regimes where relativistic effects are important. In this essay, we argue that a proper extension of quantum information theory into the relativistic domain requires the expression of all informational notions in terms of quantum field theoretic (QFT) concepts. This task requires a working and practicable theory of QFT measurements. We present the foundational problems in constructing such a theory, especially in relation to longstanding causality and locality issues in the foundations of QFT. Finally, we present the ongoing Quantum Temporal Probabilities program for constructing a measurement theory that (i) works, in principle, for any QFT, (ii) allows for a first- principles investigation of all relevant issues of causality and locality, and (iii) it can be directly applied to experiments of current interest. 相似文献