全文获取类型
收费全文 | 22453篇 |
免费 | 2973篇 |
国内免费 | 2062篇 |
专业分类
化学 | 13197篇 |
晶体学 | 134篇 |
力学 | 3140篇 |
综合类 | 133篇 |
数学 | 1743篇 |
物理学 | 9141篇 |
出版年
2024年 | 55篇 |
2023年 | 263篇 |
2022年 | 810篇 |
2021年 | 785篇 |
2020年 | 864篇 |
2019年 | 770篇 |
2018年 | 699篇 |
2017年 | 784篇 |
2016年 | 1025篇 |
2015年 | 896篇 |
2014年 | 1091篇 |
2013年 | 1839篇 |
2012年 | 1406篇 |
2011年 | 1311篇 |
2010年 | 1128篇 |
2009年 | 1223篇 |
2008年 | 1282篇 |
2007年 | 1355篇 |
2006年 | 1245篇 |
2005年 | 970篇 |
2004年 | 848篇 |
2003年 | 762篇 |
2002年 | 698篇 |
2001年 | 574篇 |
2000年 | 595篇 |
1999年 | 567篇 |
1998年 | 524篇 |
1997年 | 457篇 |
1996年 | 373篇 |
1995年 | 337篇 |
1994年 | 308篇 |
1993年 | 230篇 |
1992年 | 214篇 |
1991年 | 179篇 |
1990年 | 174篇 |
1989年 | 147篇 |
1988年 | 132篇 |
1987年 | 109篇 |
1986年 | 71篇 |
1985年 | 69篇 |
1984年 | 69篇 |
1983年 | 40篇 |
1982年 | 52篇 |
1981年 | 22篇 |
1980年 | 23篇 |
1979年 | 28篇 |
1978年 | 17篇 |
1977年 | 9篇 |
1976年 | 13篇 |
1957年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Asaad Khalid Mohnad Abdalla Maria Saeed Muhammad Nabeel Ghayur Surya Kant Kalauni Mohammed Albratty Hassan A. Alhazmi Mohammed Ahmed Mesaik Anwarul Hassan Gilani Zaheer Ul-Haq 《Molecules (Basel, Switzerland)》2022,27(11)
Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker. 相似文献
62.
Wei Zhu Fengming Wu Jindie Hu Wenjing Wang Jifeng Zhang Guoqing Guo 《Molecules (Basel, Switzerland)》2022,27(11)
Chlorogenic acid (CGA), an important metabolite in natural plant medicines such as honeysuckle and eucommia, has been shown to have potent antinociceptive effects. Nevertheless, the mechanism by which CGA relieves chronic pain remains unclear. α-amino-3-hydroxy-5-methyl-4-isooxazolpropionic acid receptor (AMPAR) is a major ionotropic glutamate receptor that mediates rapid excitatory synaptic transmission and its glutamate ionotropic receptor AMPA type subunit 1 (GluA1) plays a key role in nociceptive transmission. In this study, we used Western blot, surface plasmon resonance (SPR) assay, and the molecular simulation technologies to investigate the mechanism of interaction between CGA and AMPAR to relieve chronic pain. Our results indicate that the protein expression level of GluA1 showed a dependent decrease as the concentration of CGA increased (0, 50, 100, and 200 μM). The SPR assay demonstrates that CGA can directly bind to GluA1 (KD = 496 μM). Furthermore, CGA forms a stable binding interaction with GluA1, which is validated by molecular dynamics (MD) simulation. The binding free energy between CGA and GluA1 is −39.803 ± 14.772 kJ/mol, where van der Waals interaction and electrostatic interaction are the major contributors to the GluA1–CGA binding, and the key residues are identified (Val-32, Glu-33, Ala-36, Glu-37, Leu-48), which play a crucial role in the binding interaction. This study first reveals the structural basis of the stable interaction between CGA and GluA1 to form a binding complex for the relief of chronic pain. The research provides the structural basis to understand the treatment of chronic pain and is valuable to the design of novel drug molecules in the future. 相似文献
63.
Physically unacceptable chaotic numerical solutions of nonlinear circuits and systems are discussed in this paper. First, as an introduction, a simple example of a wrong choice of a numerical solver to deal with a second-order linear ordinary differential equation is presented. Then, the main result follows with the analysis of an ill-designed numerical approach to solve and analyze a particular nonlinear memristive circuit. The obtained trajectory of the numerical solution is unphysical (not acceptable), as it violates the presence of an invariant plane in the continuous systems. Such a poor outcome is then turned around, as we look at the unphysical numerical solution as a source of strong chaotic sequences. The 0–1 test for chaos and bifurcation diagrams are applied to prove that the unacceptable (from the continuous system point of view) numerical solutions are, in fact, useful chaotic sequences with possible applications in cryptography and the secure transmission of data. 相似文献
64.
孔梯度陶瓷纤维复合膜管的制备及特性 总被引:1,自引:0,他引:1
陶瓷过滤管具有孔隙率高、耐腐蚀、耐高温、机械强度高、便于清洗、使用寿命长等优点,是高温烟尘处理用的高效过滤元件.本文研制了一种具有梯度孔结构堇青石陶瓷纤维复合膜过滤元件,该过滤元件是由多孔支撑体、过渡层和分离膜层组成.其中支撑体、过渡层和分离层的气孔率分别为35~40;、50~60;和60~70;.文中主要分析了孔梯度陶瓷纤维复合膜管的材料结构和抗热震性能,同时对复合膜管进行含尘气体过滤的冷态模拟试验.对于烟气中粒径大于或等于0.1μm的颗粒,复合膜管的截留率达到99.8;以上. 相似文献
65.
Eugeny Nikolaevich Zapolotsky Sergey Pavlovich Babailov Gennadiy Alexandrovich Kostin 《Molecules (Basel, Switzerland)》2022,27(14)
1H NMR measurements are reported for the CD2Cl2/CDCl3 solutions of the Co(II) calix[4]arenetetraphosphineoxide complex (I). Temperature dependences of the 1H NMR spectra of I have been analyzed using the line shape analysis, taking into account the temperature variation of paramagnetic chemical shifts, within the frame of the dynamic NMR method. Conformational dynamics of the 2:1 Co(II) calix[4]arene complexes was conditioned by the pinched cone ↔pinched cone interconversion of I (with activation Gibbs energy ΔG≠(298K) = 40 ± 3 kJ/mol. Due to substantial temperature dependence of paramagnetic shifts, complex I can be used as model compound for designing an NMR thermosensor reagent for local temperature monitoring. 相似文献
66.
Influenza virus infections continue to be a significant and recurrent public health problem. Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments are being sought to reduce the burden of flu-related illness. The time-consuming development of treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of 2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were stable throughout the simulation period. According to ADME analysis, the hit compounds have a high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds experimentally against the influenza H7N9 virus. The investigation and validation of these potential H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings. 相似文献
67.
Yue Jia Tingji Yao Guangcai Ma Qi Xu Xianglong Zhao Hui Ding Xiaoxuan Wei Haiying Yu Zhiguo Wang 《Molecules (Basel, Switzerland)》2022,27(9)
Biotransformation of organophosphorus flame retardants (OPFRs) mediated by cytochrome P450 enzymes (CYPs) has a potential correlation with their toxicological effects on humans. In this work, we employed five typical OPFRs including tris(1,3-dichloro-2-propyl) phosphate (TDCIPP), tris(1-chloro-2-propyl) phosphate (TCIPP), tri(2-chloroethyl) phosphate (TCEP), triethyl phosphate (TEP), and 2-ethylhexyl diphenyl phosphate (EHDPHP), and performed density functional theory (DFT) calculations to clarify the CYP-catalyzed biotransformation of five OPFRs to their diester metabolites. The DFT results show that the reaction mechanism consists of Cα-hydroxylation and O-dealkylation steps, and the biotransformation activities of five OPFRs may follow the order of TCEP ≈ TEP ≈ EHDPHP > TCIPP > TDCIPP. We further performed molecular dynamics (MD) simulations to unravel the binding interactions of five OPFRs in the CYP3A4 isoform. Binding mode analyses demonstrate that CYP3A4-mediated metabolism of TDCIPP, TCIPP, TCEP, and TEP can produce the diester metabolites, while EHDPHP metabolism may generate para-hydroxyEHDPHP as the primary metabolite. Moreover, the EHDPHP and TDCIPP have higher binding potential to CYP3A4 than TCIPP, TCEP, and TEP. This work reports the biotransformation profiles and binding features of five OPFRs in CYP, which can provide meaningful clues for the further studies of the metabolic fates of OPFRs and toxicological effects associated with the relevant metabolites. 相似文献
68.
Jos L. Medina-Franco Edgar Lpez-Lpez Liliam P. Martínez-Fernndez 《Molecules (Basel, Switzerland)》2022,27(9)
Inhibitors of epigenetic writers such as DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug and probe discovery. To advance epigenetic probes and drug discovery, chemical companies are developing focused libraries for epigenetic targets. Based on a knowledge-based approach, herein we report the identification of two quinazoline-based derivatives identified in focused libraries with sub-micromolar inhibition of DNMT1 (30 and 81 nM), more potent than S-adenosylhomocysteine. Also, both compounds had a low micromolar affinity of DNMT3A and did not inhibit DNMT3B. The enzymatic inhibitory activity of DNMT1 and DNMT3A was rationalized with molecular modeling. The quinazolines reported in this work are known to have low cell toxicity and be potent inhibitors of the epigenetic target G9a. Therefore, the quinazoline-based compounds presented are attractive not only as novel potent inhibitors of DNMTs but also as dual and selective epigenetic agents targeting two families of epigenetic writers. 相似文献
69.
Targeting enzymes that play a role in the biosynthesis of the bacterial cell wall has long been a strategy for antibacterial discovery. In particular, the cell wall of Mycobacterium tuberculosis (Mtb) is a complex of three layers, one of which is Peptidoglycan, an essential component providing rigidity and strength. UDP-GlcNAc, a precursor for the synthesis of peptidoglycan, is formed by GlmU, a bi-functional enzyme. Inhibiting GlmU Uridyltransferase activity has been proven to be an effective anti-bacterial, but its similarity with human enzymes has been a deterrent to drug development. To develop Mtb selective hits, the Mtb GlmU substrate binding pocket was compared with structurally similar human enzymes to identify selectivity determining factors. Substrate binding pockets and conformational changes upon substrate binding were analyzed and MD simulations with substrates were performed to quantify crucial interactions to develop critical pharmacophore features. Thereafter, two strategies were applied to propose potent and selective bacterial GlmU Uridyltransferase domain inhibitors: (i) optimization of existing inhibitors, and (ii) identification by virtual screening. The binding modes of hits identified from virtual screening and ligand growing approaches were evaluated further for their ability to retain stable contacts within the pocket during 20 ns MD simulations. Hits that are predicted to be more potent than existing inhibitors and selective against human homologues could be of great interest for rejuvenating drug discovery efforts towards targeting the Mtb cell wall for antibacterial discovery. 相似文献
70.