全文获取类型
收费全文 | 6076篇 |
免费 | 503篇 |
国内免费 | 502篇 |
专业分类
化学 | 1421篇 |
晶体学 | 24篇 |
力学 | 2343篇 |
综合类 | 103篇 |
数学 | 1403篇 |
物理学 | 1787篇 |
出版年
2024年 | 13篇 |
2023年 | 72篇 |
2022年 | 131篇 |
2021年 | 187篇 |
2020年 | 180篇 |
2019年 | 140篇 |
2018年 | 153篇 |
2017年 | 233篇 |
2016年 | 315篇 |
2015年 | 228篇 |
2014年 | 277篇 |
2013年 | 415篇 |
2012年 | 264篇 |
2011年 | 313篇 |
2010年 | 273篇 |
2009年 | 327篇 |
2008年 | 330篇 |
2007年 | 313篇 |
2006年 | 316篇 |
2005年 | 297篇 |
2004年 | 301篇 |
2003年 | 236篇 |
2002年 | 205篇 |
2001年 | 186篇 |
2000年 | 163篇 |
1999年 | 146篇 |
1998年 | 135篇 |
1997年 | 130篇 |
1996年 | 128篇 |
1995年 | 102篇 |
1994年 | 97篇 |
1993年 | 66篇 |
1992年 | 57篇 |
1991年 | 49篇 |
1990年 | 43篇 |
1989年 | 30篇 |
1988年 | 27篇 |
1987年 | 29篇 |
1986年 | 31篇 |
1985年 | 26篇 |
1984年 | 21篇 |
1983年 | 5篇 |
1982年 | 31篇 |
1981年 | 8篇 |
1980年 | 11篇 |
1979年 | 10篇 |
1978年 | 10篇 |
1977年 | 5篇 |
1974年 | 4篇 |
1973年 | 4篇 |
排序方式: 共有7081条查询结果,搜索用时 15 毫秒
991.
基于修正偶应力和高阶剪切理论建立了仅含有一个尺度参数的Reddy变截面微梁的自由振动模型,研究了变截面微梁自由振动问题的尺度效应和横向剪切变形对自振频率计算的影响。基于哈密顿原理推导了动力学方程与边界条件,并采用微分求积法求解了各种边界条件下的自振频率。算例结果表明,基于偶应力理论预测的变截面微梁的自振频率均大于经典梁理论的预测结果,即捕捉到了尺度效应。另外,梁的几何尺寸与尺度参数越接近,尺度效应就越明显,而梁的长细比越小,横向剪切变形对自振频率的影响就越明显。 相似文献
992.
通过对铝合金圆环的纵向冲击压缩研究发现,一定条件下在试件的宏观塑性硬化阶段会出现明显的应力降过程。为揭示此应力降的发生机制,对润滑、细磨、粗磨3种端面粗糙条件下,外径、内径和高度比值为6:3:2的LY12铝合金圆环进行系统的Hopkinson压杆纵向冲击实验。结果表明:应力降主要发生在较大的应变和较高的应变率条件。进一步对实验样品的金相观察发现:应力降产生的内在机制为绝热剪切带的形成和发展,此现象是一种动态塑性失稳的过程。以上结果为金属材料在冲击条件下绝热剪切带产生的研究提供了参考。 相似文献
993.
994.
O. M. Faltinsen 《力学进展》2017,(1):1-24
本文列举了诸多工程领域中的液体共振运动现象,详细探讨了船舱中伴有剧烈流动的晃荡问题.描述了基于理论分析的非线性多模态方法,该方法便于波动稳定性分区、多分支解和物理稳定性的研究.强调了方形舱、垂向圆柱舱以及球形舱内伴有旋转和混沌(不规则波动)的三维流动的重要性.晃荡引起的砰击涉及到各种各样的内流条件,这些条件随液体深度与舱体长度之比而变化.针对棱柱状LNG舱,讨论了许多与流体力学和热力学参数、影响砰击载荷效应的水弹性以及模型实验缩尺比的物理现象. 相似文献
995.
996.
Failure of rock mass that is subjected to compres-sive loads occurs from initiation, propagation, and linkage of new cracks from preexisting fissures. Our research inves-tigates the cracking behaviour and coalescence process in a brittle material with two non-parallel overlapping flaws using a high-speed camera. The coalescence tensile crack and tensile wing cracks were the first cracks to occur from the pre-existing flaws. The initiation stresses of the primary cracks at the two tips of each flaw were simultaneous and decreased with reduced flaw inclination angle. The following types of coalescence cracks were identified between the flaws: pri-mary tensile coalescence crack, tensile crack linkage, shear crack linkage, mixed tensile-shear crack, and indirect crack coalescence. Coalescence through tensile linkage occurred mostly at pre-peak stress. In contrast, coalescence through shear or mixed tensile-shear cracks occurred at higher stress. Overall, this study indicates that the geometry of preexisting flaws affect crack initiation and coalescence behaviour. 相似文献
997.
《Particuology》2017
The interface between soil and structure can be referred to as a soil-structure system, and its behavior plays an important role in many geotechnical engineering practices. In this study, results are presented from a series of monotonic direct shear tests performed on a sand-structure interface under constant normal stiffness using the discrete element method (DEM). Strain localization and dilatancy behavior of the interface is carefully examined at both macroscopic and microscopic scales. The effects of soil initial relative density and normal stress on the interface shear behavior are also investigated. The results show that a shear band progressively develops along the structural surface as shear displacement increases. At large shear displacement a unique relationship between stress ratio and void ratio is reached in the shear band for a certain normal stress, indicating that a critical state exists in the shear band. It is also found that the thickness and void ratio of the shear band at the critical state decreases with increasing normal stress. Comparison of the DEM simulation results with experimental results provides insight into the shear behavior of a sand-structure interface and offers a means for quantitative modeling of such interfaces based on the critical state soil mechanics. 相似文献
998.
《Comptes Rendus Mecanique》2017,345(11):779-796
In order to comprehensively investigate the effect of different joint geometries on the shear behavior of rocks, the Distinct Element Method (DEM) was utilized with a new bond contact model. A series of direct shear tests on coplanar and non-coplanar jointed rocks was simulated using the PFC2D software, which incorporates our bond contact model. Both coplanar jointed rocks with different joint persistence and non-coplanar ones with different joint inclinations were simulated and investigated numerically. The numerical results were compared and discussed with relevant laboratory tests as well as some reported numerical works. The results show that for coplanar jointed rocks, the peak shear stress decreases nonlinearly with the joint persistence, and the failure process can be divided into four stages: elastic shearing phase, crack propagation, failure of rock bridges, and residual phase. For non-coplanar jointed rocks, as the absolute value of the inclination angle of the rock joints increases, its shear strength increases, changing the failure patterns and the length of new fractures between existing cracks. When the absolute value increases from 15° to 30°, the average shear capacity increases the most as 39%, while the shear capacity increases the least as 2.9% when the absolute value changes from 45° to 60°. There is a good consistency of the failure patterns obtained from experiments and numerical tests. All these demonstrate that the DEM can be further applied to rock mechanics and practical rock engineering with confidence in the future. 相似文献
999.
《Wave Motion》2017
This paper presents a simulation-based analysis of the effect of a reflecting surface on aeroacoustic Time-Reversal (TR) source localization/characterization and compares the results of TR with those obtained using cross-spectral Conventional Beamforming (CB). The TR technique is shown to require the use of at least two line arrays of microphones to accurately characterize the nature of aeroacoustic sources. This work, however, shows that in the presence of a rigid surface, only one line array of microphones is sufficient to accurately localize and characterize idealized aeroacoustic sources. Forward simulations were carried out using the 2-D Linearized Euler Equations on a rectangular domain with a rigid bottom boundary (modeling a 2-D semi-infinite space) for the test-cases of stationary idealized tonal aeroacoustic (monopole, dipole and lateral quadrupole) sources located in a fully-developed mean shear flow field wherein the acoustic pressure time–history was stored at the computational boundaries. A set of TR simulations are implemented that show for each test-case that only the top line array is required to accurately characterize the idealized aeroacoustic sources in the presence of a reflecting bottom boundary, thereby suggesting the redundancy of acoustic pressure measurement at the rigid surface. The test-case of convecting (moving) idealized aeroacoustic source was also considered and the TR simulation using only the top line array in the presence of reflecting bottom boundary was able to accurately retrieve the source trajectory and simultaneously characterize its nature. This numerical experiment demonstrates in principle that when a rigid surface is mounted on the floor of an Anechoic Wind Tunnel, the use of only one (top) line array of microphones should be sufficient to characterize the nature and location of experimental flow-induced noise source. Acoustic source maps were also obtained using the CB method based on the Method of Images (to model the reflecting surface) and incorporation of the Ray-Tracing algorithm necessary to account for the effect of mean flow. The CB results were found to be highly comparable to those obtained using TR for the test-cases of non-convecting sources; thereby demonstrating the conceptual equivalence of the Method of Images and directly implementing the rigid-wall condition during TR for source localization/characterization. 相似文献
1000.
《Wave Motion》2017
An analytical model is developed to investigate the sound transmission loss from orthogonally rib-stiffened double laminated composite plates structure under a plane sound wave excitation, in which first order shear deformation theory is presented for laminated composite plates. By using the space harmonic approach and virtual work principle, the sound transmission loss is described analytically. The validity and feasibility of the model are verified by comparing the present theoretical predictions with numerical results published previously. The influences of structure geometrical parameters on sound transmission loss are subsequently presented. Through numerical results, it can be concluded that the proposed analytical model is accurate and simple in solving the vibroacoustic behavior of an orthogonally rib-stiffened double laminated composite plates. 相似文献