首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   312篇
  免费   24篇
  国内免费   16篇
化学   213篇
力学   42篇
数学   6篇
物理学   91篇
  2023年   1篇
  2022年   4篇
  2021年   5篇
  2020年   19篇
  2019年   7篇
  2018年   14篇
  2017年   13篇
  2016年   13篇
  2015年   12篇
  2014年   9篇
  2013年   24篇
  2012年   10篇
  2011年   10篇
  2010年   12篇
  2009年   24篇
  2008年   32篇
  2007年   22篇
  2006年   16篇
  2005年   19篇
  2004年   7篇
  2003年   21篇
  2002年   14篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1996年   4篇
  1994年   2篇
  1992年   1篇
  1979年   1篇
排序方式: 共有352条查询结果,搜索用时 15 毫秒
131.
 通过落锤实验,对发泡聚乙烯(EPE)、发泡聚丙烯(EPP)材料的动态力学性能进行了研究,提出了一种获得聚合物泡沫材料在恒定应变率下本构曲线的方法,建立了EPE的Low Density Foam本构模型。以此为基础,探索了在冰箱跌落过程中,聚合物泡沫包装材料的能量吸收以及对冰箱抗跌落冲击的保护能力。  相似文献   
132.
We herein presented a mesoporous cellular foam solid‐phase microextraction coating that showed highly sensitive recognition for weakly polarity polychlorinated biphenyls in water samples. The mesoporous cellular foam coater fiber was for the first time prepared by a simple sol‐gel method. The main experimental parameters including extraction temperature, extraction time, desorption time, stirring rate, and ionic strength were investigated by high‐efficiency orthogonal array design, a L16 (44) matrix was applied for the identification of optimized extraction parameters, and the optimized method was successfully applied to the analysis of environmental water sample. The novel mesoporous cellular foam coated fibers exhibited sensitive limits of detection (0.07–0.28 µg/L), wide linearity (5–3000 µg/L), and good reproducibility (3.5–8.3% for single fiber, and 4.9–8.7% for fiber‐to‐fiber) for polychlorinated biphenyls. The home‐made coating was successfully used in the analysis of polychlorinated biphenyls in real environmental water samples. These results indicate that the synthesized mesoporous cellular foams are promising materials for adsorption and separation applications in sample pretreatment.  相似文献   
133.
We demonstrated a simple and effective dual-templating approach for the synthesis of hierarchically mesocellular carbon foams by using nonionic surfactant of sorbitan monooleate and silica colloid particles as sacrificial templates, and resorcinol/ formaldehyde as carbon source. The representative carbon foam has dual mesopore sizes of 4 and 10 nm, and possesses the specific surface area of 580 m2/g and the total pore volume of 0.80 cm3/g.  相似文献   
134.
The axisymmetric and plane extrusion flows of a liquid foam are simulated assuming that the foam is a homogeneous compressible Newtonian fluid that slips along the walls. Compressibility effects are investigated using both a linear and an exponential equation of state. The numerical results confirm previous reports that the swelling of the extrudate decreases initially as the compressibility of the fluid is increased and then increases considerably. The latter increase is sharper in the case of the exponential equation of state. In the case of non-zero inertia, high compressibility was found to lead to a contraction of the extrudate after the initial expansion, similar to that observed experimentally with liquid foams and to decaying oscillations of the extrudate surface. The time-dependent calculations show that the oscillatory steady-state solutions are stable. These steady-state oscillatory solutions are not affected by the length of the extrudate region nor by the boundary condition along the wall.  相似文献   
135.
The effect of polylactic acid (PLA), cellulose microfibers (CEL), and calcium carbonate (CaCO3) on the equilibrium moisture content (EMC), density and flexural mechanical properties of starch-based bio-foams was studied using a full factorial design 23. Also, a moisture aging study was carried out. The results show the three factors studied changed the bio-foams morphology, contribute to density increment, enhance dimensional stability and improve both the moisture resistance and the mechanical flexural properties. The moisture aging studies show that, although the flexural mechanical properties decrease with increasing humidity, the bio-foams exceed the mechanical properties of commercial expanded polystyrene (EPS) trays. These findings suggest the bio-composites could be used in regions where the humidity conditions are moderate to very humid, guaranteeing their dimensional stability and functional properties. Thus, these new bio-foams are an attractive and sustainable option to replace the non-biodegradable EPS commercial trays.  相似文献   
136.
137.
A template‐assisted polymer‐derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron‐modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m2 g?1 and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal–organic frameworks (MOFs) directly within the open‐cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %.  相似文献   
138.
Thermally induced phase separation is a fabrication technique for porous polymeric structures. By means of easy‐to‐tune processing parameters, such as system composition and demixing temperature, a vast latitude of average pore dimensions, pore size distributions, and morphologies can be obtained. The relation between demixing temperature and morphology was demonstrated via cloud point curve measurement and foams fabrication with controlled thermal protocols, for the model system poly‐l ‐lactide–dioxane–water. The morphologies obtained at a temperature lower than cloud point showed a closed‐pore architecture, suggesting a “nucleation‐and‐growth” separation mechanism, which produced larger pores at higher holding times. Conversely, the porous structures attained when holding the sample above the cloud point exhibited open pores with dimensions independent of time, denoting a phase separation occurring during sample freezing. Finally, the influence of the cooling rate on final morphology was investigated, showing a clear correlation with microstructure and pore size. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 979–983  相似文献   
139.
The deformation properties of monotropic plastic foams under uniaxial compression or tension perpendicularly to the foam rise direction are considered. Theoretical results are obtained for the case where the volume- deformation hypothesis is assumed. In order to perform numerical calculations, the foams are devided into three groups with different degrees of monotropy. For these groups, different methods of calculating the numerical value of the relative volume strain are used. The Young's modulus in the plane of isotropy is determined using both the mixed Reuss-Voigt and Voigt averaging. The Poisson ratios are expressed using the Reuss averaging. If only the axial deformation of the load-bearing elements (polymer struts) is allowed for, the results obtained do not agree with experimental data. Therefore, we also take into account the changes in their orientation. The values of Young's modulus and Poisson ratios are obtained for a wide range of degrees of extension of the model cell. A comparison of the theoretical results with the experimental data available shows a satisfactory agreement.  相似文献   
140.
Seven dependent elastic constants of monotropic plastic foams with an expressed strut-like structure are calculated. For this purpose, the basic results of the previously elaborated mathematical model for light-weight plastic foams is used. The model includes a model cell of local structure for monotropic/isotropic plastic foams and an ensemble of structural elements, which allows one to calculate the seven dependent elastic constants, taking into account the pronounced polydispersity of the structure of plastic foams. The numerical values of the constants are compared with the available experimental data, and a satisfactory agreement is found to exist. As a final result, a full set of general expressions and numerical values are obtained for all 12 elastic constants of monotropic plastic foams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号