首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   21篇
  国内免费   16篇
化学   212篇
力学   42篇
数学   6篇
物理学   87篇
  2023年   1篇
  2022年   3篇
  2021年   5篇
  2020年   19篇
  2019年   7篇
  2018年   13篇
  2017年   13篇
  2016年   13篇
  2015年   12篇
  2014年   9篇
  2013年   23篇
  2012年   10篇
  2011年   10篇
  2010年   11篇
  2009年   24篇
  2008年   31篇
  2007年   22篇
  2006年   16篇
  2005年   19篇
  2004年   7篇
  2003年   21篇
  2002年   14篇
  2001年   11篇
  2000年   6篇
  1999年   8篇
  1998年   11篇
  1996年   4篇
  1994年   2篇
  1992年   1篇
  1979年   1篇
排序方式: 共有347条查询结果,搜索用时 625 毫秒
11.
Rigid polyurethane foams with up to 50 wt% of microcapsules from LDPE-EVA containing Rubitherm®RT27 were synthesized. The influence of microcapsules on the foams density, microstructure and mechanical resistance was studied. Cell size and strut and wall thicknesses were analyzed by SEM. The relationships between densities and foam microstructures with their Young's moduli and collapse stress were found by the Gibson and Ashby formulations and the Kerner equation for mechanical properties of composites. It was found a cell structure change from polyhedral closed-cells to spherical or amorphous open-cells. A good agreement between the experimental and theoretical data was observed but requiring a cell form factor. Thus, Fitting parameters confirmed the high trend of these microcapsules to be incorporated into the foam cell walls and the form factors depicted the abrupt change of cell morphology. Thus, these equations are suitable for predicting the mechanical properties of foams containing fillers of low mechanical resistance.  相似文献   
12.
Porous shape memory polymers (SMPs) exhibit geometric and volumetric shape change when actuated by an external stimulus and can be fabricated as foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. These materials have applications in multiple industries such as textiles, biomedical devices, tissue engineering, and aerospace. This review article examines recent developments in porous SMPs, with a focus on fabrication methods, methods of characterization, modes of actuation, and applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1300–1318  相似文献   
13.
Three kinds of polyethylene glycol phosphates (PEGPs) toughening agents were synthesized by esterification of phosphorus pentoxide (P2O5) with polyethylene glycol and characterized by Fourier transform infrared spectra and 31P nuclear magnetic resonance. A series of lightweight phenolic foams toughened with different loadings of PEGPs were prepared. Optical microscopy results show that the addition of PEGPs with small molecular weight PEG improves the structural homogeneity of phenolic foams obviously. The flame retardancy of toughened phenolic foams was evaluated by using UL 94, limiting oxygen index, and cone calorimeter. The results indicate that the incorporation of PEGPs not only increases the toughness of phenolic foams but also improves their flame retardancy. Moreover, the thermal stability of PEGPs and the toughened foams was investigated by thermogravimetric analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
14.
Poly(vinyl alcohol)/melamine phosphate composites (PVA/MP) as a novel halogen‐free, flame‐retardant foam matrix were prepared through thermal processing, and then their thermal stability and flame retardancy were investigated by thermo‐gravimetric analysis, micro‐scale combustion calorimeter, cone calorimeter, vertical burning test, and limiting oxygen index (LOI) test. It was found that the thermal stability and combustion properties of the PVA/MP composites could be influenced by the addition of MP. Compared with the control PVA sample (B‐PVA), in the PVA/MP (75/25) composites, the temperature at 5% mass loss (T5%) decreased about 10°C, the residual chars at 600°C increased by nearly 27%, the temperature at the maximum peak heat release rate (TP) shifted from 292°C to 452°C, and the total heat released and the heat release capacity (HRC) decreased by 28% and 14%, respectively. Moreover, the PVA/MP composites could reach LOI value up to 35% and UL94 classification V‐0, showing good flame retardancy. At the same time, both Fourier transform infrared and X‐ray photoelectron spectroscopy spectra of the residual chars from the PVA/MP composites demonstrated that the catalytic effect of MP on the dehydration and decarboxylation reactions of PVA, and the chemical reactivity of MP during the chars‐forming reactions could be used to account for the changed thermal stability and flame retardancy of the PVA/MP composites. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
15.
Two‐way multicomponent diffusion processes in polymeric nanocomposite foams, where the condensed phase is nanoscopically reinforced with impermeable fillers, are investigated. The diffusion process involves simultaneous outward permeation of the components of the dispersed gas phase and inward diffusion of atmospheric air. The transient variation in thermal conductivity of foam is used as the macroscopic property to track the compositional variations of the dispersed gases due to the diffusion process. In the continuum approach adopted, the unsteady‐state diffusion process is combined with tortuosity theory. The simulations conducted at ambient temperature reveal distinct regimes of diffusion processes in the nanocomposite foams owing to the reduction in the gas‐transport rate induced by nanofillers. Simulations at a higher temperature are also conducted and the predictions are compared with experimentally determined thermal conductivities under accelerated diffusion conditions for polyurethane foams reinforced with clay nanoplatelets of varying individual lamellar dimensions. Intermittent measurements of foam thermal conductivity are performed while the accelerated diffusion proceeded. The predictions under accelerated diffusion conditions show good agreement with experimentally measured thermal conductivities for nanocomposite foams reinforced with low and medium aspect‐ratios fillers. The model shows higher deviations for foams with fillers that have a high aspect ratio.  相似文献   
16.
The phase behaviour of a number of N‐alkylimidazolium salts was studied using polarizing optical microscopy, differential scanning calorimetry and X‐ray diffraction. Two of these compounds exhibit lamellar mesophases at temperatures above 50°C. In these systems, the liquid crystalline behaviour may be induced at room temperature by shear. Sheared films of these materials, observed between crossed polarisers, have a morphology that is typical of (wet) liquid foams: they partition into dark domains separated by brighter (birefringent) walls, which are approximately arcs of circle and meet at “Plateau borders” with three or more sides. Where walls meet three at a time, they do so at approximately 120° angles. These patterns coarsen with time and both T1 and T2 processes have been observed, as in foams. The time evolution of domains is also consistent with von Neumann's law. We conjecture that the bright walls are regions of high concentration of defects produced by shear, and that the system is dominated by the interfacial tension between these walls and the uniform domains. The control of self‐organised monodomains, as observed in these systems, is expected to play an important role in potential applications.  相似文献   
17.
采用生物质原料腰果酚和9,10-二氢-9-氧杂-10-膦杂菲-10-氧化物(DOPO)为原料, 合成了一种磷杂菲改性腰果酚多元醇(P-Cardanol-Polyol), 并利用核磁共振氢谱和磷谱对其结构进行了表征. 利用P-Cardanol-Polyol对聚氨酯硬泡(RPUF)进行阻燃改性, 得到一系列阻燃聚氨酯硬泡. 考察了P-Cardanol-Polyol的用量对阻燃聚氨酯硬泡的形貌、 密度、 热导率、 压缩性能、 热稳定性以及阻燃性能的影响. 研究结果表明, P-Cardanol-Polyol对聚氨酯硬泡的密度影响可以忽略不计; 随着P-Cardanol-Polyol的加入, 阻燃聚氨酯硬泡的平均孔径逐渐减小, 热导率也逐渐降低. 未改性聚氨酯硬泡的最大热释放速率和总放热量分别为390 kW/m2和31.9 MJ/m2, 阻燃聚氨酯硬泡则降低至340 kW/m2和24.6 MJ/m2. 此外, 阻燃聚氨酯硬泡的压缩强度比未改性聚氨酯硬泡提升了约13%. 炭层分析结果表明, P-Cardanol-Polyol能够促进聚氨酯硬泡形成连续致密且具有良好抗热氧化性能的炭层, 有利于减少燃烧过程中可燃性气体的逸出, 从而提升阻燃性能.  相似文献   
18.
Surfactant-mediated wetting and spreading are ubiquitous. Understanding of these phenomena in-depth allows precise tailoring of wetting performance which can contribute to global challenges in the food supply chain, healthcare, ecology and industrial processes. The first part of this review shows how surfactants can be used to improve the efficacy of fertilisers and pesticides in agriculture, enhanced oil recovery, treatment of lung diseases and extinguishing fires involving flammable liquids. The second part provides analysis of recent studies on wetting and spreading over solid substrates. It includes discussion on the effect of surfactants on the outcome of the impact of liquid drops, the wetting state after impact, autophobic effect and spreading kinetics for both partial and complete wetting, including superspreading. Perspectives of future development in the area of surfactant-assisted wetting and spreading on solid substrates are outlined.  相似文献   
19.
20.
The main aim of this work was to investigate the synergistic effect of expandable graphite (EG) and aluminum hypophosphite (AHP) on the flame retardancy of rigid polyurethane foams (RPUFs). A series of flame retardant RPUF containing EG and AHP were prepared by one‐shot and free‐rise method. The flame retardant, thermal degradation, and combustion properties of RPUF hybrids were characterized through limiting oxygen index (LOI) test, vertical burning (UL‐94) test, thermogravimetric analysis and microscale combustion calorimeter. The LOI and UL‐94 results showed that the RPUF sample with 10 wt% EG and 5 wt% AHP passed UL‐94 V‐0 rating and reached a relatively high LOI value of 28.5%, which is superior over other EG/AHP ratios in RPUF at the equivalent filler loading. Microscale combustion calorimeter results revealed that the incorporation of EG and AHP into RPUF reduced the peak heat release rate and total heat release, thus decrease the fire risk of RPUF significantly. Incorporation of EG and AHP improved the thermal stability of RPUF as observed from the thermogravimetric analysis results and also enhanced the thermal resistance of char layer at high temperature from scanning electron microscopy and Raman spectroscopy. Moreover, it could be seen from thermogravimetric analysis/infrared spectrometry spectra that the addition of EG and AHP significantly decreased the combustible gaseous products such as hydrocarbons and ethers. Finally, the synergistic mechanism in flame retardancy was discussed and speculated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号