首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9770篇
  免费   1115篇
  国内免费   663篇
化学   279篇
晶体学   49篇
力学   4117篇
综合类   114篇
数学   4993篇
物理学   1996篇
  2024年   11篇
  2023年   114篇
  2022年   144篇
  2021年   173篇
  2020年   288篇
  2019年   231篇
  2018年   266篇
  2017年   300篇
  2016年   337篇
  2015年   254篇
  2014年   404篇
  2013年   735篇
  2012年   465篇
  2011年   522篇
  2010年   455篇
  2009年   528篇
  2008年   489篇
  2007年   565篇
  2006年   546篇
  2005年   544篇
  2004年   472篇
  2003年   461篇
  2002年   426篇
  2001年   389篇
  2000年   354篇
  1999年   355篇
  1998年   328篇
  1997年   261篇
  1996年   213篇
  1995年   162篇
  1994年   127篇
  1993年   94篇
  1992年   111篇
  1991年   94篇
  1990年   68篇
  1989年   40篇
  1988年   30篇
  1987年   33篇
  1986年   27篇
  1985年   34篇
  1984年   23篇
  1983年   25篇
  1982年   12篇
  1981年   7篇
  1980年   7篇
  1979年   5篇
  1977年   4篇
  1973年   2篇
  1959年   2篇
  1957年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
261.
借助于两套有限元网格空间提出了一种求解定常不可压Stokes方程的两层罚函数方法.该方法只需要求解粗网格空间上的Stokes方程和细网格空间上的两个易于求解的罚参数方程(离散后的线性方程组具有相同的对称正定系数矩阵).收敛性分析表明粗网格空间相对于细网格空间可以选择很小,并且罚参数的选取只与粗网格步长和问题的正则性有关.因此罚参数不必选择很小仍能够得到最优解.最后通过数值算例验证了上述理论结果,并且数值对比可知两层罚函数方法对于求解定常不可压Stokes方程具有很好的效果.  相似文献   
262.
有限CN-p-群     
每个子群都C-正规的有限群称为CN-群.本文首先给出二元生成的CN-p-群的完全分类.在此基础上得到CN-p-群的结构:当p为奇素数时,有限群G为CNp-群当且仅当G的每个元都平凡地作用在Φ(G)上;有限群G为CN-2-群当且仅当对任意给定的a∈G,都有对任意g∈Φ(G),g~a=g或者对任意g∈Φ(G),g~a=g~(-1).最后给出两个CN-p-群的直积是CN-p-群的判定条件.  相似文献   
263.
We consider fourth‐order singularly perturbed problems posed on smooth domains and the approximation of their solution by a mixed Finite Element Method on the so‐called Spectral Boundary Layer Mesh. We show that the method converges uniformly, with respect to the singular perturbation parameter, at an exponential rate when the error is measured in the energy norm. Numerical examples illustrate our theoretical findings.  相似文献   
264.
We report the first attempt to model the contacts of an ionic polymer metal composite(IPMC) based tactile sensor. The tactile sensor comprises an IPMC actuator, an IPMC sensor and the target to be detected. The system makes use of multiple contacts to work: the actuator comes into contact with the sensor and pushes the movement of sensor; the contact between the sensor and the object detects the existence and the stiffness of the target. We integrate modeling of various physical processes involved in IPMC devices to form a simulation scheme. An iteration and optimization strategy is also described to correlate the experimental and simulation results of an IPMC bending actuator to identify the two key parameters used in electromechanical transduction. Modeling the multiple contacts will aid the design and optimization of such IPMC based soft robotics.  相似文献   
265.
The design of the mold and the choice of the injection parameters for metal injection molding (MIM) is required to maintain homogeneity of the filled mixture. However, powder segregation is unavoidable in MIM because of the significant difference in densities of the metallic powder and the polymer binder. To achieve an effective prediction of segregation effect, a biphasic model based on mixture theory is employed. The viscous behaviors of each phase and the interaction coefficient between the flows of the two phases should be determined. The solution of two coupled Navier–Stokes equations results in a tremendous computation effort. The previous development of an explicit algorithm makes the biphasic simulation much faster than that of the classic methods. However, it is strongly desired to reduce or even eliminate the numerous global solutions for pressure fields at each time step. Hence, a new vectorial algorithm is proposed and developed to perform the simulation only by vectorial operations. It provides the anticipated efficiency in the simulation of biphasic modeling, and the advantage to use the classic elements of equal‐order interpolations. Some results produced by the two algorithms are compared with the experimental values to validate the new vectorial algorithm. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
266.
An investigation is made of the performance of algebraic multigrid (AMG) solvers for the discrete Stokes problem. The saddle‐point formulations are based on the direct enforcement of the fundamental conservation laws in discrete spaces and subsequently stabilised with the aid of a regular splitting of the diffusion operator. AMG solvers based on an independent coarsening of the fields (the unknown approach) and also on a common coarsening (the point approach) are investigated. Both mixed‐order and equal‐order interpolations are considered. The dependence of convergence on the ‘degree of coarsening’ is investigated by studying the ‘convergence versus coarsening’ characteristics and their variation with mesh resolution. They show a consistency in shape, which reveals two distinct performance zones, one convergent the other divergent. The transition from the convergent to the divergent zones is discontinuous and occurs at a critical coarsening factor that is largely mesh independent. It signals a breakdown in the stability of the smoothing at the coarser levels of coarse grid approximation. It is shown that the previously observed, mesh‐dependent, scaling of convergence factors, which had suggested inconsistencies in the coarse grid approximation, is not a reliable marker of inconsistency. It is an indirect consequence of the breakdown in the stability of smoothing. For stable smoothing, reduction factors are shown to be largely mesh independent. The ability of mixed‐order interpolation to permit stable smoothing and therefore to deliver mesh‐independent convergence is explained. Two expedient options are suggested for obtaining mesh‐independent convergence for those AMG codes that are based on an equal‐order interpolation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
267.
A three‐dimensional Cartesion cut cell method is presented for the simulations of incompressible viscous flows with irregular domains. A new model (referred to as ‘6+N’ model) is proposed to describe arbitrarily shaped cut cells and treat all the cells as polyhedrons with 6+N faces. The finite volume discretization of the Navier–Stokes equation is then implemented by using the ‘6+N’ model to separate the surface flux integrals into two parts, that is, the fluxes through the basic face of the hexahedron and those through the cutting surfaces. The previously proposed Kitta Cube algorithm and volume computer‐aided design platform (J. Comput. Aided. Des. 2005; 37(4): 1509–1520. Doi:10.1016/j.cad.2005.03.006) are adopted to generate cut cells and provide shape data and physical attributes for the numerical analysis. A modified SIMPLE‐based smoothing pressure correction scheme is applied to suppress checkerboard pressure oscillations caused by the collocated arrangement of velocities and pressure. The calculation accuracy of the numerical method expressed by L1 and L norm errors is first demonstrated by the simulation of a pipe flow. Then its feasibility, efficiency, and potential in engineering applications are verified by applying it to solve natural convections between concentric spheres and between eccentric spheres. The heat transfer patterns in eccentric spheres are also obtained by using the numerical method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
268.
While the quadriceps muscles of human body are quite important to the daily activities of knee joints,the determination of quadriceps forces poses significant challenges since it cannot be measured in ...  相似文献   
269.
This paper examines the combined effects of a transverse magnetic field and variable viscosity on unsteady flow of a reactive third‐grade electrically conducting fluid and heat transfer in a channel with convective cooling at the surface. It is assumed that the fluid has small electrical conductivity and the electromagnetic force produced is very small. The coupled nonlinear partial differential equations governing the problem are derived and solved numerically using a semi‐implicit finite‐difference scheme. Both numerical and graphical results are presented and physical aspects of the problem are discussed with respect to various parameters embedded in the system. It is in general noted that those parameters that increase/decrase one flow quantity (velocity or temperature) also lead to the increase/decrease respectively of the other quantity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
270.
The acoustic perturbation equations (APE) are suitable to predict aerodynamic noise in the presence of a non‐uniform mean flow. As for any hybrid computational aeroacoustics approach, a first computational fluid dynamics simulation is carried out from which the mean flow characteristics and acoustic sources are obtained. In a second step, the APE are solved to get the acoustic pressure and particle velocity fields. However, resorting to the finite element method (FEM) for that purpose is not straightforward. Whereas mixed finite elements satisfying an appropriate inf–sup compatibility condition can be built in the case of no mean flow, that is, for the standard wave equation in mixed form, these are difficult to implement and their good performance is yet to be checked for more complex wave operators. As a consequence, strong simplifying assumptions are usually considered when solving the APE with FEM. It is possible to avoid them by resorting to stabilized formulations. In this work, a residual‐based stabilized FEM is presented for the APE at low Mach numbers, which allows one to deal with the APE convective and reaction terms in its full extent. The key of the approach resides in the design of the matrix of stabilization parameters. The performance of the formulation and the contributions of the different terms in the equations are tested for an acoustic pulse propagating in sheared‐solenoidal mean flow, and for the aeolian tone generated by flow past a two‐dimensional cylinder. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号