首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3156篇
  免费   691篇
  国内免费   601篇
化学   1878篇
晶体学   15篇
力学   351篇
综合类   57篇
数学   1035篇
物理学   1112篇
  2024年   24篇
  2023年   82篇
  2022年   204篇
  2021年   264篇
  2020年   340篇
  2019年   212篇
  2018年   182篇
  2017年   147篇
  2016年   193篇
  2015年   170篇
  2014年   155篇
  2013年   284篇
  2012年   130篇
  2011年   165篇
  2010年   147篇
  2009年   192篇
  2008年   178篇
  2007年   175篇
  2006年   173篇
  2005年   112篇
  2004年   147篇
  2003年   114篇
  2002年   104篇
  2001年   69篇
  2000年   67篇
  1999年   71篇
  1998年   52篇
  1997年   44篇
  1996年   32篇
  1995年   34篇
  1994年   21篇
  1993年   16篇
  1992年   12篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   23篇
  1984年   16篇
  1983年   6篇
  1982年   8篇
  1981年   10篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1975年   1篇
  1969年   1篇
排序方式: 共有4448条查询结果,搜索用时 961 毫秒
191.
Increasing long‐term photostability of BiVO4 photoelectrode is an important issue for solar water splitting. The NiOOH oxygen evolution catalyst (OEC) has fast water oxidation kinetics compared to the FeOOH OEC. However, it generally shows a lower photoresponse and poor stability because of the more substantial interface recombination at the NiOOH/BiVO4 junction. Herein, we utilize a plasma etching approach to reduce both interface/surface recombination at NiOOH/BiVO4 and NiOOH/electrolyte junctions. Further, adding Fe2+ into the borate buffer electrolyte alleviates the active but unstable character of etched‐NiOOH/BiVO4, leading to an outstanding oxygen evolution over 200 h. The improved charge transfer and photostability can be attributed to the active defects and a mixture of NiOOH/NiO/Ni in OEC induced by plasma etching. Metallic Ni acts as the ion source for the in situ generation of the NiFe OEC over long‐term durability.  相似文献   
192.
We report a method for the electrochemical deuteration of α,β‐unsaturated carbonyl compounds under catalyst‐ and external‐reductant‐free conditions, with deuteration rates as high as 99 % and yields up to 91 % in 2 h. The use of graphite felt for both the cathode and the anode was key to ensuring chemoselectivity and high deuterium incorporation under neutral conditions without the need for an external reductant. This method has a number of advantages over previously reported deuteration reactions that use stoichiometric metallic reductants. Mechanistic experiments showed that O2 evolution at the anode not only eliminates the need for an external reductant but also regulates the pH of the reaction mixture, keeping it approximately neutral.  相似文献   
193.
The storage of solar energy in battery systems is pivotal for a sustainable society, which faces many challenges. Herein, a Zn–air battery is constructed with two cathodes of poly(1,4‐di(2‐thienyl))benzene (PDTB) and TiO2 grown on carbon papers to sandwich a Zn anode. The PDTB cathode is illuminated in a discharging process, in which photoelectrons are excited into the conduction band of PDTB to promote oxygen reduction reaction (ORR) and raise the output voltage. In a reverse process, holes in the valence band of the illuminated TiO2 cathode are driven for the oxygen evolution reaction (OER) by an applied voltage. A record‐high discharge voltage of 1.90 V and an unprecedented low charge voltage of 0.59 V are achieved in the photo‐involved Zn–air battery, regardless of the equilibrium voltage. This work offers an innovative pathway for photo‐energy utilization in rechargeable batteries.  相似文献   
194.
Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.  相似文献   
195.
Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets.  相似文献   
196.
Strain engineering can increase the activity and selectivity of an electrocatalyst. Tensile strain is known to improve the electrocatalytic activity of palladium electrodes for reduction of carbon dioxide or dioxygen, but determining how strain affects the hydrogen evolution reaction (HER) is complicated by the fact that palladium absorbs hydrogen concurrently with HER. We report here a custom electrochemical cell, which applies tensile strain to a flexible working electrode, that enabled us to resolve how tensile strain affects hydrogen absorption and HER activity for a thin film palladium electrocatalyst. When the electrodes were subjected to mechanically‐applied tensile strain, the amount of hydrogen that absorbed into the palladium decreased, and HER electrocatalytic activity increased. This study showcases how strain can be used to modulate the hydrogen absorption capacity and HER activity of palladium.  相似文献   
197.
A dual‐site catalyst allows for a synergetic reaction in the close proximity to enhance catalysis. It is highly desirable to create dual‐site interfaces in single‐atom system to maximize the effect. Herein, we report a cation‐deficient electrostatic anchorage route to fabricate an atomically dispersed platinum–titania catalyst (Pt1O1/Ti1?xO2), which shows greatly enhanced hydrogen evolution activity, surpassing that of the commercial Pt/C catalyst in mass by a factor of 53.2. Operando techniques and density functional calculations reveal that Pt1O1/Ti1?xO2 experiences a Pt?O dual‐site catalytic pathway, where the inherent charge transfer within the dual sites encourages the jointly coupling protons and plays the key role during the Volmer–Tafel process. There is almost no decay in the activity of Pt1O1/Ti1?xO2 over 300 000 cycles, meaning 30 times of enhancement in stability compared to the commercial Pt/C catalysts (10 000 cycles).  相似文献   
198.
199.
200.
Fabricating a low‐cost and highly efficient electrocatalyst is of importance for the development of renewable energy devices. In this work, we have synthesized an ultrafine cobalt oxide nanocatalyst (5–10 nm) doped with boron (BC/Co3O4) by using a metal–organic framework as a precursor, which exhibits an excellent catalytic activity for oxygen evolution reaction (OER). Owing to the improvement of accessible active sites by boron doping, the synthesized catalyst can reach a current density of 10 mA cm?2 at 1.54 V with a low overpotential of 310 mV, superior than those of commercial RuO2 and N‐doped C/Co3O4. This work provides a facile way to develop highly efficient catalysts for electrochemical reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号