首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3208篇
  免费   701篇
  国内免费   609篇
化学   1909篇
晶体学   15篇
力学   365篇
综合类   57篇
数学   1036篇
物理学   1136篇
  2024年   32篇
  2023年   91篇
  2022年   223篇
  2021年   266篇
  2020年   346篇
  2019年   217篇
  2018年   183篇
  2017年   147篇
  2016年   196篇
  2015年   171篇
  2014年   156篇
  2013年   287篇
  2012年   131篇
  2011年   167篇
  2010年   147篇
  2009年   193篇
  2008年   179篇
  2007年   176篇
  2006年   175篇
  2005年   112篇
  2004年   147篇
  2003年   114篇
  2002年   105篇
  2001年   69篇
  2000年   67篇
  1999年   73篇
  1998年   52篇
  1997年   44篇
  1996年   33篇
  1995年   34篇
  1994年   21篇
  1993年   16篇
  1992年   12篇
  1991年   17篇
  1990年   14篇
  1989年   9篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   23篇
  1984年   16篇
  1983年   6篇
  1982年   8篇
  1981年   10篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   5篇
  1975年   1篇
  1969年   1篇
排序方式: 共有4518条查询结果,搜索用时 31 毫秒
181.
Herein, a detailed investigation of the surface modification of a zinc oxide (ZnO) nanorod electrode with FeOOH nanoparticles dispersed in glycine was conducted to improve the water oxidation reaction assisted by sunlight. The results were systematically analysed in terms of the general parameters (light absorption, charge separation, and surface for catalysis) that govern the photocurrent density response of metal oxide as photoanode in a photoelectrochemical (PEC) cell. ZnO electrodes surface were modified with different concentration of FeOOH nanoparticles using the spin-coating deposition method, and it was found that 6-layer deposition of glycine-FeOOH nanoparticles is the optimum condition. The glycine plays an important role decreasing the agglomeration of FeOOH nanoparticles over the ZnO electrode surface and increasing the overall performance. Comparing bare ZnO electrodes with the ones modified with glycine-FeOOH nanoparticles an enhanced photocurrent density can be observed from 0.27 to 0.57 mA/cm2 at 1.23 VRHE under sunlight irradiation. The impedance spectroscopy data aid us to conclude that the higher photocurrent density is an effect associated with more efficient surface for chemical reaction instead of electronic improvement. Nevertheless, the charge separation efficiency remains low for this system. The present discovery shows that the combination of glycine-FeOOH nanoparticle is suitable and environmentally-friend cocatalyst to enhance the ZnO nanorod electrode activity for the oxygen evolution reaction assisted by sunlight irradiation.  相似文献   
182.
Single‐atom catalysts have attracted much attention. Reported herein is that regulating charge transfer of lattice oxygen atoms in serial single‐atom‐doped titania enables tunable hydrogen evolution reaction (HER) activity. First‐principles calculations disclose that the activity of lattice oxygen for the HER can be regularly promoted by substituting its nearest metal atom, and doping‐induced charge transfer plays an essential role. Besides, the realm of the charge transfer of the active site can be enlarged to the second nearest atom by creating oxygen vacancies, resulting in further optimization for the HER. Various single‐atom‐doped titania nanosheets were fabricated to validate the proposed model. Taking advantage of the localized charge transfer to the lattice atom is demonstrated to be feasible for realizing precise regulation of the electronic structures and thus catalytic activity of the nanosheets.  相似文献   
183.
Strain engineering can increase the activity and selectivity of an electrocatalyst. Tensile strain is known to improve the electrocatalytic activity of palladium electrodes for reduction of carbon dioxide or dioxygen, but determining how strain affects the hydrogen evolution reaction (HER) is complicated by the fact that palladium absorbs hydrogen concurrently with HER. We report here a custom electrochemical cell, which applies tensile strain to a flexible working electrode, that enabled us to resolve how tensile strain affects hydrogen absorption and HER activity for a thin film palladium electrocatalyst. When the electrodes were subjected to mechanically‐applied tensile strain, the amount of hydrogen that absorbed into the palladium decreased, and HER electrocatalytic activity increased. This study showcases how strain can be used to modulate the hydrogen absorption capacity and HER activity of palladium.  相似文献   
184.
A dual‐site catalyst allows for a synergetic reaction in the close proximity to enhance catalysis. It is highly desirable to create dual‐site interfaces in single‐atom system to maximize the effect. Herein, we report a cation‐deficient electrostatic anchorage route to fabricate an atomically dispersed platinum–titania catalyst (Pt1O1/Ti1?xO2), which shows greatly enhanced hydrogen evolution activity, surpassing that of the commercial Pt/C catalyst in mass by a factor of 53.2. Operando techniques and density functional calculations reveal that Pt1O1/Ti1?xO2 experiences a Pt?O dual‐site catalytic pathway, where the inherent charge transfer within the dual sites encourages the jointly coupling protons and plays the key role during the Volmer–Tafel process. There is almost no decay in the activity of Pt1O1/Ti1?xO2 over 300 000 cycles, meaning 30 times of enhancement in stability compared to the commercial Pt/C catalysts (10 000 cycles).  相似文献   
185.
186.
187.
Fabricating a low‐cost and highly efficient electrocatalyst is of importance for the development of renewable energy devices. In this work, we have synthesized an ultrafine cobalt oxide nanocatalyst (5–10 nm) doped with boron (BC/Co3O4) by using a metal–organic framework as a precursor, which exhibits an excellent catalytic activity for oxygen evolution reaction (OER). Owing to the improvement of accessible active sites by boron doping, the synthesized catalyst can reach a current density of 10 mA cm?2 at 1.54 V with a low overpotential of 310 mV, superior than those of commercial RuO2 and N‐doped C/Co3O4. This work provides a facile way to develop highly efficient catalysts for electrochemical reactions.  相似文献   
188.
In‐depth understanding of the catalytic active sites is of paramount importance for the design of efficient electrocatalysts for CO2 conversion. Here we highlight the structural evolution of SnO2 nanosheets for electrocatalytic CO2 reduction. The transformation of SnO2 into metallic Sn would occur on the surface of catalyst during the catalytic process, followed by enhanced selectivity and activity for the conversion of CO2 to HCOOH. Electrocatalytic characterization and structural analysis demonstrate that the metallic Sn derived from structural evolution plays a dominant role in the CO2 reduction to HCOOH. This work deepens the understanding of the catalytic mechanism and provides a new pathway for the rational design of advanced electrocatalysts for CO2 reduction.  相似文献   
189.
Developing efficient powder catalysts for hydrogen evolution reaction (HER) in the acidic electrolyte is significant for hydrogen generation in the proton exchange membrane (PEM) water electrolysis technique. Herein, we demonstrated an efficient catalyst for HER in the acid media based on the graphene supported ruthenium telluride nanoparticles (RuTe2/Gr). The catalysts were easily fabricated by a facile microwave irradiation/thermal annealing approach, and orthorhombic RuTe2 crystals were found anchored over the graphene surface. The defective structure was demonstrated in the aberration‐corrected transmission electron microscopy images for RuTe2 crystals and graphene support. This catalyst required an overpotential of 72 mV to drive 10 mA cm?2 for HER when loading on the inert glass carbon electrode; Excellent catalytic stability in acidic media was also observed to offer 10 mA cm?2 for 10 hours. The Volmer‐Tafel mechanism was indicated on RuTe2/Gr catalyst by Tafel slope of 33 mV dec?1, similar to that of Pt/C catalysts. The high catalytic performance of RuTe2/Gr could be attributed to its high dispersion on the graphene surface, high electrical conductivity and low charge transfer resistance. This powder catalyst has potential application in the PEM water electrolysis technique because of its low cost and high stability.  相似文献   
190.
Two-dimensional metal-organic frameworks (2D MOFs) inherently consisting of metal entities and ligands are promising single-atom catalysts (SACs) for electrocatalytic chemical reactions. Three 2D Fe-MOFs with NH, O, and S ligands were designed using density functional theory calculations, and their feasibility as SACs for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) was investigated. The NH, O, and S ligands can be used to control electronic structures and catalysis performance in 2D Fe-MOF monolayers by tuning charge redistribution. The results confirm the Sabatier principle, which states that an ideal catalyst should provide reasonable adsorption energies for all reaction species. The 2D Fe-MOF nanomaterials may render highly-efficient HER, OER, and ORR by tuning the ligands. Therefore, we believe that this study will serve as a guide for developing of 2D MOF-based SACs for water splitting, fuel cells, and metal-air batteries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号