首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5473篇
  免费   869篇
  国内免费   554篇
化学   3559篇
晶体学   231篇
力学   262篇
综合类   39篇
数学   145篇
物理学   2660篇
  2024年   12篇
  2023年   57篇
  2022年   136篇
  2021年   157篇
  2020年   187篇
  2019年   145篇
  2018年   169篇
  2017年   205篇
  2016年   231篇
  2015年   200篇
  2014年   265篇
  2013年   628篇
  2012年   354篇
  2011年   399篇
  2010年   240篇
  2009年   366篇
  2008年   350篇
  2007年   353篇
  2006年   300篇
  2005年   264篇
  2004年   249篇
  2003年   202篇
  2002年   251篇
  2001年   131篇
  2000年   141篇
  1999年   100篇
  1998年   108篇
  1997年   89篇
  1996年   93篇
  1995年   80篇
  1994年   80篇
  1993年   68篇
  1992年   48篇
  1991年   35篇
  1990年   23篇
  1989年   23篇
  1988年   27篇
  1987年   12篇
  1986年   18篇
  1985年   15篇
  1984年   16篇
  1983年   5篇
  1982年   14篇
  1981年   6篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1976年   5篇
  1974年   5篇
  1973年   4篇
排序方式: 共有6896条查询结果,搜索用时 15 毫秒
941.
New poly (vinylidenefluoride-co-hexafluoro propylene) (PVDF-HFP)/CeO2-based microcomposite porous polymer membranes (MCPPM) and nanocomposite porous polymer membranes (NCPPM) were prepared by phase inversion technique using N-methyl 2-pyrrolidone (NMP) as a solvent and deionized water as a nonsolvent. Phase inversion occurred on the MCPPM/NCPPM when it is treated by deionized water (nonsolvent). Microcomposite porous polymer electrolytes (MCPPE) and nanocomposite porous polymer electrolytes (NCPPE) were obtained from their composite porous polymer membranes when immersed in 1.0 M LiClO4 in a mixture of ethylene carbonate/dimethyl carbonate (EC/DMC) (v/v = 1:1) electrolyte solution. The structure and porous morphology of both composite porous polymer membranes was examined by scanning electron microscope (SEM) analysis. Thermal behavior of both MCPPM/NCPPM was investigated from DSC analysis. Optimized filler (8 wt% CeO2) added to the NCPPM increases the porosity (72%) than MCPPM (59%). The results showed that the NCPPE has high electrolyte solution uptake (150%) and maximum ionic conductivity value of 2.47 × 10−3 S cm−1 at room temperature. The NCPPE (8 wt% CeO2) between the lithium metal electrodes were found to have low interfacial resistance (760 Ω cm2) and wide electrochemical stability up to 4.7 V (vs Li/Li+) investigated by impedance spectra and linear sweep voltammetry (LSV), respectively. A prototype battery, which consists of NCPPE between the graphite anode and LiCoO2 cathode, proves good cycling performance at a discharge rate of C/2 for Li-ion polymer batteries.  相似文献   
942.
Novel CE methods have been developed on portable instrumentation adapted to accommodate a capacitively coupled contactless conductivity detector for the separation and sensitive detection of inorganic anions and cations in post‐blast explosive residues from homemade inorganic explosive devices. The methods presented combine sensitivity and speed of analysis for the wide range of inorganic ions used in this study. Separate methods were employed for the separation of anions and cations. The anion separation method utilised a low conductivity 70 mM Tris/70 mM CHES aqueous electrolyte (pH 8.6) with a 90 cm capillary coated with hexadimethrine bromide to reverse the EOF. Fifteen anions could be baseline separated in 7 min with detection limits in the range 27–240 μg/L. A selection of ten anions deemed most important in this application could be separated in 45 s on a shorter capillary (30.6 cm) using the same electrolyte. The cation separation method was performed on a 73 cm length of fused‐silica capillary using an electrolyte system composed of 10 mM histidine and 50 mM acetic acid, at pH 4.2. The addition of the complexants, 1 mM hydroxyisobutyric acid and 0.7 mM 18‐crown‐6 ether, enhanced selectivity and allowed the separation of eleven inorganic cations in under 7 min with detection limits in the range 31–240 μg/L. The developed methods were successfully field tested on post‐blast residues obtained from the controlled detonation of homemade explosive devices. Results were verified using ion chromatographic analyses of the same samples.  相似文献   
943.
Neutron diffraction is a powerful tool for the characterization of materials and, particularly, oxides. Oxide materials find applications in solid oxide fuel cells (SOFCs) as solid electrolytes as well as anode and cathode materials. As a structural probe, neutrons are specially suitable for the crystallographic study of oxides, given the comparable scattering factors of O and other heavier elements, allowing its precise localization in the crystal structure. Many problems can be addressed by neutrons, related to the octahedral tilting in perovskites, phase transitions, order–disorder phenomena, presence of anionic vacancies, etc. Neutrons make possible an accurate determination of the thermal factors and provide a visualization of the diffusion paths in ionic conductors. Neutrons allow the localization of light atoms such as hydrogen, and make possible the distinction between neighbouring elements, typically Fe and Mn. In this work we will describe some recent applications of this technique in the field of solid electrolytes and electrode materials, including some examples from our group.  相似文献   
944.
Five new metal complexes [Pd(LH)2] (1), [Pd(L)2Ru2(bpy)4](ClO4)2 (2), [Pd(L)2Ru2(phen)4](ClO4)2 (3), [Pd(L)2Ru2(dafo)4](ClO4)2 (4) and [Pd(L)2Ru2(dcbpy)4](ClO4)2 (5), (where, L = ligand, bpy = 2,2′-bipyridine, phen = 1,10-phenantroline, dafo = 4,5-diazafluoren-9-one and dcbpy = 3,3′-dicarboxy-2,2′-bipyridine) have been isolated and characterized by UV-VIS, FT-IR, 1H NMR, magnetic susceptibility measurements, elemental analysis, molar conductivity, X-ray powder techniques, thermal analyses and their morphology studied by SEM measurements. IR spectra show that the ligand acts in a tetradentate manner and coordinates N4 donor groups of LH2 to PdII ion. The disappereance of H-bonding (O−H···O) in the trinuclear RuII-PdII-RuII metal complexes, the RuII ion centered into the main oxime core by the coordination of the imino groups while the two RuII ions coordinate dianionic oxygen donors of the oxime groups and linked to the ligands of bpy, phen, dafo and dbpy. The X-powder results show that 1 metal complex is indicating crystalline nature, not amorphous nature. Whereas, the X-ray powder pattern of the ligand (LH2) with 2, 3,4 and 5 exhibited only broad humps, indicating its amorphous nature. The catalytic activity of three different complexes were tested in the Suzuki coupling reaction. The 1, 4 and 5 metal complexes catalyse Suzuki coupling reaction between phenylboronic acid and arylbromides affording biphenyls. Also, the thermal results shown that the most stable complex is 1 compound while the less stable is 4 compound.  相似文献   
945.
We have developed a new strategy for the preparation of a light-responsive ionic liquid crystal (LC) that shows photo-switchable proton conduction. The ionic LC consists of a bowl-shaped calix[4]arene core ionically functionalized with azobenzene moieties. The non-covalent architectures were obtained by the formation of ionic salts between the carboxylic acid group of an azo-derivative and the terminal amine groups of a calixarene core. The presence of ionic salts results in a hierarchical self-assembly process that extends to the formation of a nanostructured lamellar LC arrangement (smectic A phase). In this LC phase, the ionic LC calixarene is able to display proton conductive properties, since the ionic nanosegregated areas (formed by the ionic pairs) generate the continuous channels that favor proton transport. The optical and photo-responsive properties were studied by UV-Vis spectroscopy, demonstrating that the azobenzene moieties of the ionic LC undergo reversible (E)-to-(Z) isomerization by irradiation with UV light. Interestingly, this (E)-to-(Z) photoisomerization results in a decrease of the proton conductivity values since the bent-shaped (Z)-isomer disrupts the lamellar LC phase. This isomerization process is totally reversible and leads to an ionic LC material with unique photo-switchable proton conductive properties.  相似文献   
946.
The physicochemical and electrochemical properties (electrical conductivity, viscosity, density, and electrochemical stability) of sulfolane solutions of various lithium salts are studied. The nature of the anion considerably affects the physicochemical and electrochemical properties of the electrolyte systems considered. Sulfolane solutions of lithium salts have moderate electrical conductivity and high electrochemical stability, and can be used as electrolytes in lithium batteries.  相似文献   
947.
Specific electric conductivity (EC) of concentrated aqueous solutions of propionic acid (PA), sodium propionate (SP), and water/PA/SP mixtures is measured in the temperature range of 15–90°C. Specific EC passes a maximum at the increase in the electrolyte concentration in the mixtures of water/PA, water/SP, and water/PA/SP containing a similar PA concentration. The maximum EC value of the aqueous PA solution at the given temperature is used as the generalizing term. It is shown that the values of reduced EC (ratio of EC and its maximum value at the given temperature) fall on a single curve in the whole studied range of temperatures and concentrations of the water/PA mixture. The EC activation energy is calculated for all the studied solutions. It is found that the EC activation energy of these solutions decreases at the temperature increase and grows at the increase of the concentration of electrolyte.  相似文献   
948.
The electrical conductivity, thermoelectrical, and optical properties of the polyaniline containing boron/double wall carbon nanotubes (CNTs) composites have been investigated. The electrical conductivities of the composites prepared with 1%, 5%, and 8% CNT concentrations at 300 K were found to be 5.31 × 10?6, 2.72 × 10?4, and 1.12 × 10?3 (S/cm), respectively. The thermoelectrical results indicate that all the samples exhibit n‐type electrical conductivity. The optical band gaps of the samples were found to be 3.71 eV for 0% DWNT, 3.32 eV for 1% DWNT, 3.15 eV for 5% DWNT, and 3.12 eV for 8% DWNT. The obtained results suggest that the electrical conductivity of PANI‐B polymer is improved by DWNT doping. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
949.
A series of electrically conductive zwitterion hybrid materials were facilely synthesized with anionic acacia gum (AG) and cationic HCl doped polyaniline (PANI) through radical copolymerization method. A representative acacia gum‐polyaniline hybrid (AG‐PANI) was characterized using UV‐vis, FTIR, 1H NMR, and SEM. HCl doped AG‐PANI possesses zwitterion character due to the presence of NH on PANI and ? COO? of AG. The cyclic voltammogram of AG‐PANI showed three anodic peaks at 0.20 V, 0.58 V, and 0.64 V along with two cathodic peaks at 0.50 V and 0.40 V with large capacitive background currents. AG‐PANI exhibited electrical conductivity that was found dependent on the ratio of aniline to AG, temperature, and pH. Its electrical conductivity versus temperature plot indicated Mott's nearest‐neighbor hopping mechanism at the temperature range 83–323 K. The hybridization of AG and PANI yielded eco‐friendly advanced functional materials for technological applications. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
950.
The electrical conductivity, thermoelectric power, and dielectric properties of polyaniline doped by boric acid (PANI‐B) have been investigated. The room temperature electrical conductivity of PANI‐B was found to be 1.02 × 10?4 S cm?1. The thermoelectric power factor for the polymer was found to be 0.64 µW m?1 K?2. The optical band gap of the PANI‐B was determined by optical absorption method, and the PANI‐B has a direct optical band gap of 3.71 eV. The alternating charge transport mechanism of the polymer is based on the correlated barrier hopping (CBH) model. The imaginary part of the dielectric modulus for the PANI‐B suggests a temperature dependent dielectric relaxation mechanism. Electrical conductivity and thermoelectric power results indicate that the PANI‐B is an organic semiconductor with thermally activated conduction mechanism. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号