首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2969篇
  免费   234篇
  国内免费   246篇
化学   382篇
晶体学   13篇
力学   1545篇
综合类   40篇
数学   442篇
物理学   1027篇
  2024年   8篇
  2023年   35篇
  2022年   44篇
  2021年   43篇
  2020年   85篇
  2019年   62篇
  2018年   78篇
  2017年   82篇
  2016年   111篇
  2015年   103篇
  2014年   135篇
  2013年   268篇
  2012年   100篇
  2011年   144篇
  2010年   110篇
  2009年   144篇
  2008年   140篇
  2007年   165篇
  2006年   168篇
  2005年   135篇
  2004年   168篇
  2003年   125篇
  2002年   122篇
  2001年   92篇
  2000年   93篇
  1999年   92篇
  1998年   97篇
  1997年   84篇
  1996年   63篇
  1995年   59篇
  1994年   44篇
  1993年   38篇
  1992年   49篇
  1991年   49篇
  1990年   20篇
  1989年   16篇
  1988年   16篇
  1987年   13篇
  1986年   11篇
  1985年   11篇
  1984年   4篇
  1983年   3篇
  1982年   3篇
  1981年   5篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1971年   1篇
  1957年   2篇
排序方式: 共有3449条查询结果,搜索用时 0 毫秒
1.
《Current Applied Physics》2015,15(11):1296-1302
One-dimensional ZnO materials have been promising for field-emission (FE) application, but how to facially control the alignment of ZnO emitters is still a great challenge especially for patterned display application. Here, we report the fabrication of novel ZnO nanowire (NW) line and bundle arrays for patterned field-electron emitters. The effects of PS template size and heating time on the resulted ZnO nanoarrays were systematically studied. The deformation degree of PS templates was controlled and hence utilized to adjust the alignment of electrochemically deposited ZnO arrays. It was found that the length of NW lines and the density of NW bundles can effectively tuned by the PS template heating time. The optimal FE performance with turn-on electric field as low as of 4.4 V μm−1 and the field-enhancement factor as high as of 1450 were achieved through decreasing the screening effect among the patterned field-electron emitters.  相似文献   
2.
The numerical prediction of the fields of inelastic strains (the linear invariant of the tensor of inelastic strains) in thermoset polyester/marble filler composite plates is discussed. A uniformly distributed load is applied to the plates, which lie on a steel base. The strain fields are predicted by means of the boundary element method by using creep test data for the composites and the polyester matrix itself. Identical creep tests were performed for two ages of the materials (1 month and 13 years), which allowed evaluating the aging effect. The study is carried out in two stages. At the first stage, the application of the generalized Maxwell-Gurevich equation to the thermoset matrix/mineral filler composite is demonstrated. The model parameters determined from the experimental creep data is used for the second stage, where the state of inelastic strains in the plates is predicted by applying the boundary element method. The influence of composite formulation (filler content) and physical aging of the polyester matrix on the state of inelastic strains in the plates is shown.__________Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 41, No. 2, pp. 145–156, March–April, 2005.  相似文献   
3.
The molecular orientation and strain‐induced crystallization of synthetic rubbers—polyisoprene rubber, polybutadiene rubber, and butyl rubber [poly(isobutylene isoprene)]—during uniaxial deformation were studied with in situ synchrotron wide‐angle X‐ray diffraction. The high intensity of the synchrotron X‐rays and the new data analysis method made it possible to estimate the mass fractions of the strain‐induced crystals and amorphous chain segments in both the oriented and unoriented states. Contrary to the conventional concept, the majority of the molecules (50–75%) remained in an unoriented amorphous state at high strains. Each synthetic rubber showed a different behavior of strain‐induced crystallization and molecular orientation during extension and retraction. Our results confirmed the occurence of strain‐induced networks in the synthetic rubbers due to the inhomogeneity of the crosslink distribution. The strain‐induced networks containing microfibrillar crystals and oriented amorphous tie chains were responsible for the ultimate mechanical properties. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 956–964, 2004  相似文献   
4.
Polypropylene (PP) was modified with elastomer or CaCO3 particles of two different sizes (1 μm and 50 nm) in various volume fractions. The dispersion morphology and mechanical properties of the two systems were investigated as functions of the particle size and volume fraction of the modifier. The brittle‐to‐tough transition occurred when the matrix ligament thickness was less than the critical ligament thickness, which was about 0.1 μm for the PP used here, being independent of the type of modifier. At the same matrix ligament thickness, the improvement of the toughness was obviously higher with the elastomer rather than with CaCO3, but adding CaCO3 increased the modulus of PP. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1656–1662, 2004  相似文献   
5.
The local and the terminal velocities, the size and the degree of bubbles’ shape deformations were determined as a function of distance from the position of the bubble formation (capillary orifice) in solutions of n-octyltrimethylammonium bromide, n-octyldimethylphosphine oxide, n-octyl-β-D-glucopyranoside and n-octanoic acid.

These surface-active compounds have different polar groups but an identical hydrocarbon chain (C8) in the molecule. The motion of the bubbles was monitored and recorded using a stroboscopic illumination, a CCD camera, and a JVC professional video. The recorded bubble images were analyzed by the image analysis software. The bubbles accelerated rapidly and their shape was deformed immediately after detachment from the capillary. The extent of the bubbles’ shape deformation (ratio of horizontal and vertical diameters) was 1.5 in distilled water and dropped rapidly down to a level of ca. 1.05–1.03 with increasing surfactant concentration. After the acceleration period the bubbles either attained a constant value of the terminal velocity (distilled water and high concentrations of the solutions), or a maximum in the velocity profiles was observed (low concentrations). The values of the terminal velocity diminished drastically with increasing concentration, from the value of 35 cm/s in water down to about 15 cm/s, while the bubble diameter decreased by ca. 10% only. The surfactant adsorption at the surface of the bubbles was evaluated and the minimum adsorption coverages required to immobilize the bubbles’ surface were determined. It was found that this minimum adsorption coverage was ca. 4% for n-octyldimethylphosphine oxide, n-octyl-β-D-glucopyranoside, n-octanoic acid and 25% for n-octyltrimethylammonium bromide. The difference in the adsorption coverage together with the surfactants’ surface activities indicate that it is mainly the adsorption kinetics of the surfactants that governs the fluidity of interfaces of the rising bubbles.  相似文献   

6.
The analysis of mechanical structures using the Finite Element Method in the framework of large elastoplastic strain, needs frequent remeshing of the deformed domain during computation. Indeed, the remeshing is due to the large geometrical distortion of finite elements and the adaptation to the physical behavior of the solution. This paper gives the necessary steps to remesh a mechanical structure during large elastoplastic deformations with damage. An important part of this process is constituted by geometrical and physical error estimates. The proposed method is integrated in a computational environment using the ABAQUS/Explicit solver and the BL2D-V2 adaptive mesher. To cite this article: H. Borouchaki et al., C. R. Mecanique 330 (2002) 709–716.  相似文献   
7.
A focused ion beam (FIB) Moiré method is proposed to measure the in-plane deformation of object in a micrometer scale. The FIB Moiré is generated by the interference between a prepared specimen grating and FIB raster scan lines. The principle of the FIB Moiré is described. The sensitivity and accuracy of deformation measurement are discussed in detail. Several specimen gratings with 0.14 and 0.20 μm spacing are used to generate FIB Moiré patterns. The FIB Moiré method is successfully used to measure the residual deformation in a micro-electro-mechanical system structure after removing the SiO2 sacrificial layer with a 5000 lines/mm grating. The results demonstrate the feasibility of this method.  相似文献   
8.
An automated procedure was developed for monitoring fast changes in the size of spherical samples of polymers during their contact with a solvent or drying. The kinetics of bulk deformation in these processes was studied for a series of cross-linked polymers, viz., gel-type and porous styrene—divinylbenzene copolymers and poly(divinylbenzenes), and hypercrosslinked polystyrenes. Gel, macroporous, and hypercrosslinked polystyrenes are substantially different in the rate, mechanism, and degree of swelling, which is associated with the principal differences in their physical structures. An unusual effect of a sharp decrease followed by a temporary increase in the volume of porous polystyrene and poly(divinylbenzene) materials were observed during desorption (evaporation) of organic solvents. Water desorption is accompanied by an excessive bulk compression of porous granules giving rise to negative deformations, which gradually relax to the state equilibrium for the dry polymer. The results of dynamic desorption porometry (for water desorption) are indicative of a bimodal size distribution of micropores in hypercrosslinked polystyrene. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 467–476, March, 2007.  相似文献   
9.
The change of the superstructure of different polyethylenes during uniaxial deformation is investigated. The method used is small-angle scattering with synchrotron radiation. For branched polyethylene (Lupolen 1840D) the whole deformation range is analyzed. Beginning with superstructure of the lamellar cluster type, the superstructure partly disappears on a time scale of a few minutes and the fibrillar structure is built up. The degree of destruction and rebuilding depends on the drawing temperature. For very high molecular weight polyethylene (GUR) a reversible change of the superstructure at higher deformation ratios and at different temperatures is observed. The superstructure of (ethylene—hexene) copolymers (TIPELIN) at high draw ratios depends on the drawing temperature and is almost independent of the side group content. Interfibrillar microcracks parallel to the draw direction are produced in samples with a low side group content for draw ratios λ ≥ 1.5.  相似文献   
10.
This review summarizes the experimental data on charge radii differences among ground state and high spin isomeric states determined by high-resolution laser spectroscopic methods. A comparison is presented between radii changes obtained from the isomeric shifts in the atomic spectra and from the quadrupole moments of both ground and isomeric states under the assumption that the radii changes are determined by the difference of the quadrupole deformations. Special attention is paid to isomers arising from the break-up of nucleon pairs and isomers of odd–odd nuclei. The characteristic features of the radii changes for isomeric states of different origin are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号