首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1637篇
  免费   169篇
  国内免费   75篇
化学   1714篇
晶体学   5篇
力学   9篇
综合类   2篇
数学   9篇
物理学   142篇
  2024年   4篇
  2023年   25篇
  2022年   21篇
  2021年   43篇
  2020年   39篇
  2019年   50篇
  2018年   35篇
  2017年   55篇
  2016年   58篇
  2015年   63篇
  2014年   65篇
  2013年   97篇
  2012年   130篇
  2011年   63篇
  2010年   74篇
  2009年   99篇
  2008年   87篇
  2007年   119篇
  2006年   107篇
  2005年   101篇
  2004年   100篇
  2003年   57篇
  2002年   48篇
  2001年   41篇
  2000年   31篇
  1999年   24篇
  1998年   37篇
  1997年   24篇
  1996年   18篇
  1995年   27篇
  1994年   19篇
  1993年   10篇
  1992年   11篇
  1991年   41篇
  1990年   29篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1976年   1篇
  1970年   1篇
排序方式: 共有1881条查询结果,搜索用时 15 毫秒
971.
Electrochemical biosensors have the unique ability to convert biological events directly into electrical signals suitable for parallel analysis. Here we utilize specific properties of constant current chronopotentiometric stripping (CPS) in the analysis of protein and DNA–protein complex nanolayers. Rapid potential changes at high negative current intensities (Istr) in CPS are utilized in the analysis of DNA–protein interactions at thiol-modified mercury electrodes. P53 core domain (p53CD) sequence-specific binding to DNA results in a striking decrease in the electrocatalytic signal of free p53. This decrease is related to changes in the accessibility of the electroactive amino acid residues in the p53CD–DNA complex. By adjusting Istr and temperature, weaker non-specific binding can be eliminated or distinguished from the sequence-specific binding. The method also reflects differences in the stabilities of different sequence-specific complexes, including those containing spacers between half-sites of the DNA consensus sequence. The high resolving power of this method is based on the disintegration of the p53CD–DNA complex by the electric field effects at a negatively charged surface and fine adjustment of the millisecond time intervals for which the complex is exposed to these effects. Picomole amounts of p53 proteins and DNA were used for the analysis at full electrode coverage but we show that even 10–20-fold smaller amounts can be analyzed. Our method cannot however take advantage of very low detection limits of the protein CPS detection because low Istr intensities are deleterious to the p53CD–DNA complex stability at the electrode surface. These data highlight the utility of developing biosensors offering novel approaches for studying real-time macromolecular protein dynamics.  相似文献   
972.
Multifunctional graphene hydrogels have attracted great attention aimed at practical applications. Herein, the novel and bifunctional composite hydrogel containing reduced graphene‐oxide nanosheets (RGO) and V2O5 nanobelts (RGO/V2O5) is successfully prepared for the first time. Surprisingly, tridimensional (3D) RGO/V2O5 composite hydrogels cannot only be used as high‐performance electromagnetic (EM) wave absorbents; they also exhibit excellent properties suitable for supercapacitor electrodes. The composites exhibit a maximum absorption of up to ?21.5 dB. In particular, a composite hydrogel showed a bandwidth of 6.63 GHz, corresponding to a reflection loss at ?10 dB, which opens the possibility for the use of 3D graphene with other functional nanomaterials as lightweight and high‐performance EM wave absorption materials. Remarkably, the composite hydrogel is capable of delivering a high specific capacitance of about 320 F g?1 at a current density of 1.0 A g?1.  相似文献   
973.
A nonstoichiometric sodium manganese oxide (NaxMnO2+δ) cathode useful for sodium batteries was synthesized by an ambient‐temperature strategy that involved facile reduction of aqueous sodium permanganate in sodium iodide and subsequent heat treatment at 600 °C. Combined powder X‐ray diffraction and synchrotron X‐ray diffraction analyses confirmed the annealed sample to belong to a NaxMnO2 phase with a P2‐hexagonal structure. The ICP‐AES results confirmed the stoichiometry of the sample to be Na0.53MnO2+δ. Electron microscopy studies revealed the particle size of the electrode to be in the range of a few hundred nanometers. The Na0.53MnO2+δ cathode delivered an average discharge capacity of 170 mA h g?1 with a stable plateau at 2.1 V for the initial 25 cycles versus sodium. Ex situ XANES studies confirmed the reversible intercalation of sodium into Na0.53MnO2+δ and suggested the accommodation of over‐stoichiometric Mn4+ ions to contribute towards the performance of the electrode.  相似文献   
974.
Ion-selective potentiometry enjoys practical utility as a simple analytical technique to measure ionic constituents in complex samples. Advances in the field have improved the selectivity and decreased the detection limit of ion-selective electrodes (ISEs) by orders of magnitude such that trace analysis in micro and nanomolar concentrations is now possible with potentiometric sensors. This tutorial reviews the fundamental principles of ion-selective potentiometry, describes the practical considerations involved in the use of these sensors to measure real samples, and discusses the statistical evaluation of experimental results compared with alternative analytical techniques.  相似文献   
975.
This review present a critical comparison of the electrochemical behavior and analytical performance of glassy carbon electrodes (GCE) modified with carbon nanotubes (CNTs) dispersed in different polymers: polyethylenimine (PEI), PEI functionalized with dopamine (PEI-Do), polyhistidine (Polyhis), polylysine (Polylys), glucose oxidase (GOx) and double stranded calf-thymus DNA (dsDNA). The comparison is focused on the analysis of the influence of the sonication time, solvent, polymer/CNT ratio, and nature of the polymer on the efficiency of the dispersions and on the electrochemical behavior of the resulting modified electrodes. The results allow to conclude that an adequate selection of the polymers makes possible not only an efficient dispersion of CNTs but also, and even more important, the building of successful analytical platforms for the detection of different bioanalytes like NADH, glucose, DNA and dopamine.  相似文献   
976.
本工作采用水热法结合银镜反应制备出一系列不同Ag负载量(2.2%、4.0%、6.4%,w/w)改性的3D纳米网状结构Ag@TiO2薄膜电极。利用电感耦合等离子体技术(ICP)、X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和X射线能谱(EDX)等表征手段测试所合成材料的形貌及成分,实验结果表明Ag纳米颗粒可以成功沉积在TiO2纳米线表面。电化学测试数据则表明,4.0%(w/w)负载量的Ag@TiO2相比于未改性和其他负载量的TiO2纳米线具有更好的倍率性能和更稳定的可逆容量。在50,100,200,400,800和1 200 mA·g-1的电流密度条件下,该改性电极的放电容量可分别达到261.4,253.7,239.5,216.5,193.1和185.1 mAh·g-1,在200 mA·g-1下循环80次后容量保持率仍能达到99.8%。  相似文献   
977.
This work reports the development of horseradish peroxidase based biosensors using screen‐printed carbon electrodes for the determination of tyramine (tyr). A novel procedure based on the insertion of the enzyme in the screen‐printing process (SPCHRPEs) has been compared with the cross‐linked immobilization into the carbon working electrode (HRP/SPCEs). Both biosensors were characterized obtaining good capability of detection (2.1±0.2 and 0.2±0.01 µM for SPCHRPEs and HRP/SPCEs, respectively). The reproducibility was 3.4 % and 6.8 % for SPCHRPEs and HRP/SPCEs, respectively. The repeatability was 2.2 % and 7.1 % for SPCHRPEs and HRP/SPCEs, respectively. The specificity towards different biogenic amines was analyzed. The developed biosensors were applied to the determination of tyr content in cheese samples.  相似文献   
978.
Biocatalytic electrodes made of buckypaper were modified with PQQ‐dependent glucose dehydrogenase on the anode and with laccase on the cathode. The enzyme modified electrodes were assembled in a biofuel cell which was first characterized in human serum solution and then the electrodes were placed onto exposed rat cremaster tissue. Glucose and oxygen dissolved in blood were used as the fuel and oxidizer, respectively, for the implanted biofuel cell operation. The steady‐state open circuitry voltage of 140±30 mV and short circuitry current of 10±3 µA (current density ca. 5 µA cm?2 based on the geometrical electrode area of 2 cm2) were achieved in the in vivo operating biofuel cell. Future applications of implanted biofuel cells for powering of biomedical and sensor devices are discussed.  相似文献   
979.
An electrochemical methodology was applied directly at an organic/water interface to detect a pesticide directly in oil, without the necessity of pre‐treatment of the sample. The oil phase was composed of soybean oil contaminated with carbendazim (methyl‐2‐benzimidazolecarbamate), and the aqueous phase consisted of a conventional Britton? Robinson buffer with a pH of 2. A boron‐doped diamond (BDD) electrode was placed directly at the interface of the two immiscible liquids. The ionic strength played an important role in the oxidation of carbendazim in our interfacial studies, as indicated by the oxidation currents varying from zero to 12 µA, depending on the position of the electrode.  相似文献   
980.
This work presents a sensitive voltammetric method for determination of the flavonoid baicalein by using a thermally reduced graphene oxide (TRGO) modified glassy carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology and structure of TRGO investigated by atomic force microscopy, FT‐IR spectroscopy and Raman spectroscopy reveal that the TRGO prepared maintained as single or bilayer sheets and with significant edge‐plane‐like defect sites. The TRGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE and GO/GCE electrodes. The electrochemical behaviors of baicalein at the TRGO/GCE were investigated by cyclic voltammetry, suggesting that the TRGO/GCE exhibits excellent electrocatalytic activity to baicalein. Under physiological conditions, the modified electrode showed linear voltammetric response from 10 nM to 10 µM for baicalein, with a detection limit of 6.0 nM. This work demonstrates that the graphene‐modified electrode is a promising tool for electrochemical determination of flavonoid drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号