首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3381篇
  免费   367篇
  国内免费   279篇
化学   394篇
晶体学   13篇
力学   1625篇
综合类   41篇
数学   861篇
物理学   1093篇
  2024年   5篇
  2023年   31篇
  2022年   36篇
  2021年   47篇
  2020年   97篇
  2019年   100篇
  2018年   92篇
  2017年   109篇
  2016年   132篇
  2015年   125篇
  2014年   166篇
  2013年   331篇
  2012年   146篇
  2011年   182篇
  2010年   127篇
  2009年   179篇
  2008年   174篇
  2007年   192篇
  2006年   193篇
  2005年   160篇
  2004年   203篇
  2003年   154篇
  2002年   135篇
  2001年   101篇
  2000年   100篇
  1999年   97篇
  1998年   105篇
  1997年   94篇
  1996年   61篇
  1995年   58篇
  1994年   43篇
  1993年   37篇
  1992年   48篇
  1991年   46篇
  1990年   19篇
  1989年   14篇
  1988年   17篇
  1987年   12篇
  1986年   11篇
  1985年   14篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   5篇
  1977年   3篇
  1976年   1篇
  1971年   1篇
  1957年   2篇
排序方式: 共有4027条查询结果,搜索用时 15 毫秒
201.
We discuss the flow of BKZ fluids in an orthogonal rheometer. Some analytical results are proved, and numerical solutions are obtained for the Currie model. These solutions show a boundary layer behavior at high Reynolds numbers and the possibility of discontinuous solutions or nonexistence at high Weissenberg numbers.  相似文献   
202.
Viscoelastic properties of model immiscible blend were studied here under steady state condition at different initial conditions and transient flow conditions. The flow‐induced microstructure has been studied on these model blends. For this system, the elastic properties of the blend are mainly governed by the interface. Measurement of the dynamic modulus and of the first normal stress difference, both reflecting this enhanced elasticity, have been used to prove the blend morphology. The dynamic moduli after cessation of shear flow, the mean diameter of the disperse phase as generated by the shear flow, have been calculated using the model of Palierne. A procedure based on a direct fitting of the dynamic moduli with the model is compared with the one that uses a weight relaxation spectrum. On the other hand, the steady state normal stress data have been related to the morphology of the blend by means of Doi and Ohta model. The specific interfacial area is found to be inversely proportional to the ratio of interfacial tension over shear stress for the blend. The flow behavior during transient shear flow was also discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3519–3533, 2005  相似文献   
203.
Microdeformation behavior in nanostructured block copolymer‐toughened epoxy resins, or templated epoxy thermosets, was studied using an in situ tensile deformation technique performed directly in a transmission electron microscope. The observed microdeformation modes were found to correlate well with the macroscopic mechanical properties of the materials. In the order of decreasing macroscopic fracture toughness, the microdeformation modes were observed to change from large uniform plastic deformation over an extensive area, to localized plastic deformation bands, to little plastic deformation observed in the most brittle material. A similar trend was also observed when samples of the same material were tested at different temperatures, reflecting changes in the deformation mechanism as a function of temperature. Structural defects were observed in nanotoughening phases when plastic deformation was observed. The implication of the observed microdeformation modes to the macroscopic toughening mechanisms is discussed in the context of the micromorphology of the nanometer sized toughening phases and parameters of the epoxy matrix chemistry such as bromination, molecular weight, and interfacial miscibility. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 393–406, 2009  相似文献   
204.
The study of rotor–fuselage interactional aerodynamics is central to the design and performance analysis of helicopters. However, regardless of its significance, rotor–fuselage aerodynamics has so far been addressed by very few authors. This is mainly due to the difficulties associated with both experimental and computational techniques when such complex configurations, rich in flow physics, are considered. In view of the above, the objective of this study is to develop computational tools suitable for rotor–fuselage engineering analysis based on computational fluid dynamics (CFD). To account for the relative motion between the fuselage and the rotor blades, the concept of sliding meshes is introduced. A sliding surface forms a boundary between a CFD mesh around the fuselage and a rotor‐fixed CFD mesh which rotates to account for the movement of the rotor. The sliding surface allows communication between meshes. Meshes adjacent to the sliding surface do not necessarily have matching nodes or even the same number of cell faces. This poses a problem of interpolation, which should not introduce numerical artefacts in the solution and should have minimal effects on the overall solution quality. As an additional objective, the employed sliding mesh algorithms should have small CPU overhead. The sliding mesh methods developed for this work are demonstrated for both simple and complex cases with emphasis placed on the presentation of the inner workings of the developed algorithms. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
205.
In this paper we demonstrate that some well‐known finite‐difference schemes can be interpreted within the framework of the local discontinuous Galerkin (LDG) methods using the low‐order piecewise solenoidal discrete spaces introduced in (SIAM J. Numer. Anal. 1990; 27 (6): 1466–1485). In particular, it appears that it is possible to derive the well‐known MAC scheme using a first‐order Nédélec approximation on rectangular cells. It has been recently interpreted within the framework of the Raviart–Thomas approximation by Kanschat (Int. J. Numer. Meth. Fluids 2007; published online). The two approximations are algebraically equivalent to the MAC scheme, however, they have to be applied on grids that are staggered on a distance h/2 in each direction. This paper also demonstrates that both discretizations allow for the construction of a divergence‐free basis, which yields a linear system with a ‘biharmonic’ conditioning. Both this paper and Kanschat (Int. J. Numer. Meth. Fluids 2007; published online) demonstrate that the LDG framework can be used to generalize some popular finite‐difference schemes to grids that are not parallel to the coordinate axes or that are unstructured. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
206.
分光路二维剪切干涉强激光腔镜变形检测系统   总被引:4,自引:1,他引:3  
介绍一种分光路二维剪切干涉光电检测系统。该系统实现了两正交方向(二维)同时进行检测与计算机自动化数据处理;采用了一系列消噪声措施和两图像相减等技术,使得波前重构中能较好地采用简单的数值积分方法;并得到了在士10μm的测量范围内,方差不超过0. 257μm和0. 05μm的灵敏度。利用该系统成功地对强激光腔镜变形过程实现了动态检测。  相似文献   
207.
The paper is devoted to peculiarities of the deformation quantization in the algebro-geometric context. A direct application of the formality theorem to an algebraic Poisson manifold gives a canonical sheaf of categories deforming coherent sheaves. The global category is very degenerate in general. Thus, we introduce a new notion of a semiformal deformation, a replacement in algebraic geometry of an actual deformation (versus a formal one). Deformed algebras obtained by semiformal deformations are Noetherian and have polynomial growth. We propose constructions of semiformal quantizations of projective and affine algebraic Poisson manifolds satisfying certain natural geometric conditions. Projective symplectic manifolds (e.g. K3 surfaces and Abelian varieties) do not satisfy our conditions, but projective spaces with quadratic Poisson brackets and Poisson–Lie groups can be semiformally quantized.  相似文献   
208.
A high‐order element‐based Galerkin method is developed to solve the non‐divergent barotropic vorticity equation (BVE). The solution process involves solving a conservative transport equation for the vorticity fields and a Poisson equation for the stream function fields. The discontinuous Galerkin method is employed for solving the transport equation and a spectral element method (continuous Galerkin) is used for the Poisson equation. A third‐order strong stability preserving explicit Runge–Kutta scheme is used for time integration. A series of tests have been performed to validate the model, which include the evolution of an idealized tropical cyclone and interaction of dual vortices in close proximity. The numerical convergence study is performed by solving the BVE on the sphere where the analytic solution is known. The test results are consistent with physical observations, and the model exhibits exponential convergence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
209.
岩土强度与变形关系的理论剖析   总被引:1,自引:0,他引:1  
深入浅出地阐述了岩土强度与变形关系,并对一些令人困惑的问题进行了讨论和作出可能的解释。  相似文献   
210.
A high-order leap-flog based non-dissipative discontinuous Galerkin timedomain method for solving Maxwell's equations is introduced and analyzed. The proposed method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements, with a Nth-order leap-frog time scheme. Moreover, the interpolation degree is defined at the element level and the mesh is refined locally in a non-conforming way resulting in arbitrary level hanging nodes. The method is proved to be stable under some CFL-like condition on the time step. The convergence of the semi-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence error are provided. Numerical experiments with highorder elements show the potential of the method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号